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SUMMARY

An empirical method for the determination of the area, rate, and
distribution of water—drop impingement on airfoils of arbitrary section
1s presented. The procedure represents an initial step toward the
development of a method which is generally applicable in the design
of thermal ice~prevention equipment for airplane wing and tail sur—
faces. Results given by the proposed empirical method are expected
to be sufficiently accurate for the purpose of heated—wing design,
and can be obtained from a few numericel computations once the velocity
distribution over the airfoil has been determined.

The emplrical method presented for incompressible flow 1s based
on results of extensive water—drop trajectory computations for five
airfoil cases which consisted of 15-percent—thick airfoils encompassing
& moderate lift-coefficient range. The differential equations per—
taining to the paths of the drops were solved by a differential
analyzer.

The method developed for incompressible flow is extended to the
calculation of area and rate of impingement on straight wings in sub—
sonic compressible flow to indicate the probable effects of compressi-—-
bility for airfoils at low subsonic Mach numbers.

INTRODUCTION

The design of thermsl ice—prevention equipment for airplane wing
and tall surfaces has progressed to the point where the amount and
distribution of heat flow can be celculated for specified flight and
icing conditions (reference 1). This design procedure requires infor—
mation as to the area, rate, and distribution of water—drop impinge-—
ment on the leading edge of the alrfoll section being analyzed. At the
Present time, an approximation of erea and rate of water—drop impinge—
ment is achleved by using a method involving the substitution of a
circular cylinder for the airfoil leading edge, as suggested in
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references 1 and 2. This substitution method is adequate for design
purposes for some combinations of cylinder diameter and drop size,
but it—can produce sizable errors for other combinations (references
1, 3, and 4).

A second means of estimating the area &nd rate of water—drop
impingement on airfoils is provided by reference 3. This method is
more accurate than the cylinder substitution method, but the calcula—
tion procedure is somewhat leborious and, as a result, its use 1s not
too practicable in & complete deslign study where a large number of
trajectories are ususlly required.

To establish & procedure which would eliminate the leborious
computations of water—drop trajectories in the design of wing thermal
ice—~prevention equipment, it beceme apparent that a large number of
water—drop trajectories would be required for study. Experience with
caelculating trajectories by the method of reference 3 had shown that
the pattern of water—drop impingement for drop sizes usually encoun—
tered in flight can be related most directly to velocity distribution
over the surface of the airfoil. Airfoil shape itself appeared to
have an effect on the pattern of impingement, but to a lesser degree
than velocity distribution. Five alrfoll cases were chosen as being
the minimum which could be expected to provide sufficient data to
include the effects of these two factors. Water—drop trajectories
were computed for these five cases.

This. report presents the results of the water—drop—-trajectory
computations. From a generalization of these data, & method is
derived that permits a relatively rapid determination of the ares,
rate, and distribution of water—drop impingement for a fairly large
number of airfoil surfaces of arbitrary profile. The derivation
and limitations of this method and the procedure for its use are
presented herein. The water—drop trajectories for the five airfoil
cases were-computed on the differential analyzer at the University of
California, Los Angeles, under contract with the NACA; and appreci—
ation is extended to the staff of the University for its aid and
cooperation during the conduct of-the program.

SYMBOLS

The following nomenclsture is used throughout this report:

a airfoll mean-line designation, fraction of chord from
leading edge over which design load is uniform

ag instantaneous drop-acceleration ratio, dimensionless
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area normal to flow direction outlined by several trajectories
at free—stream conditions, square feet

area of impingement outlined on an airfoll surface by
trajectories starting et free—stream conditions from an
initisl area of Ay, 8Square feet
chord length of airfoil, feet
dA
concentration factor (#) ; dimensionless
8
drag coefficlent of drop, dimensionless

section 1ift coefficient, dimensionless

: T2
Pressure coefficientli l—<-va;'-> :l, dimensionless

pressure coefficient at Mach number M, dimensionless

collection efficiency of airfoil, percent

rate of change of veloclty along the stagnation stream—

a(T, /)

as :l y Gimensionless

line at the stagnation point [

¥ =0
frontal height of airfoil, fraction of chord

slope of airfoll contour at a particular chordwilse
position, dimensionless

length of span, feet

liquid—water content of icing cloud, pounds of water
per cublc foot of seir

Mach number, dimensionless

welght rate of water—drop Impingement per unit of surface

area, pounds per hour,square foot

welght rate of ilmpingement of water drops on a body, per
unit span, pound per hour, foot

ratio of the vector difference between the local air and

i:-I.a."t_:rd.
drop velocities to free—stream velocity 7 ’
dimensionless
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r radlius of drop, feet

R Reynolds number for drop at relative velocity PV (2%&'-)

Ry Reynolds number for drqQp &t free—stream velocity V (%"—)

8 distance along airfoll surface from leading edge, positive
on upper surface and negative on lower surface, feet

s distance along water—drop trajectory, fraction of chord

t time, seconds

te equivalent ellipse thickness ratio for a low-drag airfoil

< 20 ) » fraction of chord
Tmax

tina.x maximum thickness of airfoil, fraction of chord

u component of local velocity parallel to chord line B
feet per second .

U locel velocity of air or drop, feet per second

v component of local velocity perpendicular to chord line,

feet per second
v free—stream air veloclty, feet per second

X,y rectengular coordinates for a system of axes having the
origin at the airfoll leading edge and the x axis,
positive toward the tralling edge, lying along the
alrfoil chord, fraction or percent of chord

x' ,y' rectangular coordinates for a system of axes having the
origin at the airfoil leading edge and the x' axis,
positive in the free—stream direction, lying parallel
to free—stream direction, fraction or percemt of chord

Ay total airfoil-ordinste intercept established by two
impinging trajectories starting from Infinity at a
distance Ay, apart, fractlon of chord

Ayq distance between two trajectories at infinity, fraction
of chord
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Mo,

av

cr

distance between two trajectories which start at infinity
and impinge tangentislly on the airfoil, fraction of
chord
angle of attack, degrees
i/2 - .
Prandtl-Glauert factor, equal to (1-M%) / , dimensionless
specific weight, pounds per cubic foot

angular displacement between local velocity and =x axis,
degrees '

kinematic viscosity of alr, square feet per second
airfoil leading—edge radius, fraction of airfoil chord
time scale (%) , dimensionless

4 .
scale modulus<9 7% X %) , dimensionless

Stream function, dimensioniess

Subscripts

air

average

critical

drop

effective

lower surface

conditions at a particular Mach number
maximum .
initial condition

condition at airfoil surface

tangential

upper surface



6 NACA TN 2476

DERIVATION OF THE METHOD

The method, derived herein, for calculating area, rate, and
distribution of drop impingement assumes that airfoill velocity distri-
bution can be considered as the primary factor influencing the paths
of water drops which approach an sirfoil. Hence, it was desired to
find a relatively simple relation between the airfoil velocity distri-—
bution (which in itself-is & function of airfoil contour) and the ares,
rate, and distribution of impingement. Accordingly, trajectories
around sirfoils of known surface velocity distribution were obtained
for analysis, and, from this information, generalizations were made
as to the behavior of drops in the presence of the different airfoil
velocity fields.

Description of Procedure Used to -
Obtain Water-Drop Trajectories

The five airfoil cases selected for the water—drop—trajectory
investigation are listed in the following table:

Leading—edge
Case Airfoil Angle of attack ¢y radius
(deg) - (percent chord)
1 15-percent—thick 0 0™ 2.67
symmetrical
Joukowski .
2 Do 2 .22 2.67
3 Do b - 2.67
L 15-percent—thick o} Uk 2.67
cambered
Joukowski
5 | NACA 65,-015 .k v 1.505
( symmetrical)

This table shows the systematic changes in the variables which
affect veloclty distribution. Cases 1, 2, and 3 were inténded to
reveal the effects of systemmatically altering airfoil velocity
distribution by changing angle of attack; case 4, compasred to cases 1
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and 3, the effects of altering velocity distribution by the addition
of a basic load distribution obtained by cambering the mean line;

and cases 3 and 5, the effects of changing general airfoil shape for

a glven angle of attack and 1ift coefficient. The upper— and lower—
surface velocity distributions over the forward region of sach of the
five airfolls are shown in figure 1. Velocity distributions for
Joukowski airfoils are used where possible because the required veloc—
ity components in the field of flow are more readily obtained than for
‘most other airfoils. It is noted in figure 1 that the varisbles
selected did not result in a wide variety of velocity distributions,
but it is believed that these distributions are of sufficient scope to
allow a generalization of the trajectory data, at least for cases in
which there are no marked nose—pressure peaks.

The water-—drop~trajectory computations were made to encompass
a speed range of 100 to 350 miles per houwr (assuming incompressible
flow), a drop—diameter range of 20 to 100 microns, and a variation
In altitude from sea level to 20,000 feet. Airfoil chord length was
varied from 3 inches to 30 feet. These varlisbles were combined into
the dimensionless parameters, V¥ and Ry, which then were used as
the independent variables throughout the tralectory computations,
The rangs in values of ¥ and Ry resulting from a combination of
each minimum value and a combination of each maximum value of the three .
constituent variables is gbout 150 to 20,000 for V¥ and about 35 to
1000 for Ry. These ranges in V¥ and Ry encofipass most other pos—

. 8ible combinations of the selected values of speed, drop size, altitude,

and chord length, but the data calculated for these ranges In ¥ and
Ry are not necessarily limited to the particular values of the con—

stituent variables used to establish the ranges in V¥ and Ry.

The problem of obtaining area, rate, and distribution of water—
drop impingement on an airfoil is one of determining the solution to
a gset of simultaneous differential equations yielding the trajectory
or path which a water drop will follow. These equations, a derivation
of which may be found in reference 5, are essentially those which result
from imposing conditions of dynamic equilibrium on & drop moving in an
air stream, In dimensionless form, the equations are

dug/M) _ ¥ CdR (___ (1)

av

a(vg /™M v ><Va va (2)

at Ry
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&) -(E-2) (-2 o

Basically, equations (1) and (2) define the acceleration of a
drop at any instant in orthogonal (x and y) directionms. Consequently,
a double integration of these equations, starting from a selected
initisl point (xo, yo), yields x and y velues necessary to plot a
drop trejectory. Equation (3) is required to proceed with the solu—
tions of equations (1) and (2). In performing the integrations,
knowledge of the quentity CdR/Eh (the retio of the actual drag coef—
ficient given by Stokes law of resistance) is required; also required
are magnitudes of the air—velocity components ug/V and. vg/V as a
function of drop location relative to the body. (See reference 5.)
Veriation of the term CgR/24 with local Reynolds number R was taken
from reference 6, while the variation of the air—velocity components
ua/V and va/V throughout the flow field was obtained analytically
for the Joukowskl alrfolls. In the case of the NACA 652—015 airfoil,
however, the velocity distribution throughout the flow field was
obtained by en electrolytic snalogy method.t

In carrying out the differentiel asnalyzér computations for the
five airfoll cases, the general procedure was to assign values to the
terms ¥ and Ry in equations (1), (2), and (3), to establish initial
conditions, and then to obtain the water—drop—trajectory traces from
the analyzer. For each combination of ¥ and Ry selected, several
trajectories were traced until the two trajectories were found, one
for the upper surface and one for the lower sirface, which were tangent
to the airfoil surface at the point of drop impact: —The importance of
these two tangentlal trajectories lies in the fact that all drops
between the tangential trajectories hit the airfoil and all drops out—
side will miss. In some cases, after the tangential trajectories were

lThe electrolytic analogy method was based on the fact that the stream—
lines In an inviscid incompressible £luid_and the equipotential -
lines in en electrical field ere governed by the same equatioms. By
means of this analogy and suiltably constructed apparatus, velocities
at any point in the flow field around a body could be measured
directly. Accuracy of the electrolytic analogy method of -obtalning
velocitles was assessed by comparing measured velocities with theo—
retically calculated values for two bodies. Comparisons were made
for a small cylinder, with and without circulation, and for a 15—
percent~thick Joukowskl airfoill (of various chord lengths) with and
without circulation. For optimum test conditions, the accuracy in
velocities was about +5 percent out to approximately one—half chord
forwerd of the airfoil. Between one-haslf and ome chord length
forward of the airfoil, velocities could be obtained with an esti—
mated accuracy of £10 percent.

oY
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established, the distance between them was divided into six approxi-—
mately equal spaces, and trajectories started at the boundary of each
space were traced. These intermediate trajectories were used to
obtain an indication of the distribution of water—drop lmpingement
over the airfoil surface.

Water—Drop—Tra Jectory Data

All the tengential trajectories, and the trajectories traced for
distribution of impingement, are presented for the five airfoll cases
in figures 2 through 6. The drop trajectories, which were calculated
for assigned values of the independent variables V¥ eand Ry directly
yield values of trajectory starting ordinates and surface positions
of drop impingement. These varlables, which, by the method of analysis
shown in reference 1, can be used to determine the values of the

dependent varlables, area, rate, and distribution of impingement, are
tabulated in tables I through V for each of the alrfoil cases. Also
included in the tables are the veloclty components of the drops at the
point of impingement.

Manner in Which Water-Drop—Trajectory Data
Were Generalized

The objective in generalizing the water—drop—trajectory data
obtailned from the differential amalyzer is to establish a relatively
simple method for determining the impingement pattern of water drops
on an arbitrarily selected airfoll at a given attitude for specified
values of ¥ and Ry. It is desirable that application of such a
method should require only information which is usually available for
the airfoil profile, or which is easily procured, such as the pressure
distribution. Therefore, the first part of this section will present
the reasoning associated with deriving such a method for incompressible
flow from the results of the trajectory date; the letter part 1s
devoted to an extension of the basic method to subsonic compressible
£low.

Generalization In regard to area of weater—drop impingement.— In
order to determine the area of water—drop impingement on the leading
edge of an airfoll for specified meteorological and flight conditions,
the values of s/c for the trajectories which lmpinge tangentielly on
the upper and lower surfaces must be obtained. In computationsl
methods like those of references '3, 5, and 6, the procedure essentially
has been to select values of V¥ and Ry and then to determine the
trajectory. Various trajectorles are computed until the tangential
trajectory for the upper and lower surfaces is found. The two
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tangential trajectories located determine the farthest positions of
drop impingement on the airfoil surface for the selected values of ¥
end Ry and permit calculating area of impingement from the equation

-[(2), -(£) ]

In the derilvation of the empirical method, herein presented, the
reverse procedure was employed; thet is, a point on the airfoil was
selected (s/) end the corresponding V¥ and Ry values which are
associasted with the tangential trsjectories at that point were deter—
mined. The nature of the reletionship between s/f and the parame—
ters ¥ and Ry 1s shown in figure 7. Data for the figure are those
of table IV for the cambered alrfoil at zero angle of attack and a
1ift coefficient of O.hk., From figure 7, it can be seen that any
gpecified value of sﬁ: in the figure can correspond to an infinite
nuwber of combinations of Ry and V¥, Consequently it becomes
necessary to select values of one varisble and to solve for the other.
In the derivation of the method of this report, values of Ry are
assumed and corresponding values of V¥ are computed.

If the date of figure 7 could be made avallaeble for all airfoils
of interest, the problem of determining sA: for various values of
¥ and Ry would, of course, be simple. Because obtaining such data
for all airfolils is impractical, the problem in the general case
arises In determining the relatiom between Ry, ¥ , and sA;. To
determine this relationship, equations (1), (2), and (3) are utilized
to derive an expression for the scale modulus ¥ , which is

T A ()

B

where

oo ) [ 2 ]

aT daT

Equation (L4) expresses generally the relation between ¥ and Ry .
at 8ll points in & trajectory, and, therefore, it is applicable at the ﬁt:l
alrfoil surface far an arbitrarily selected value of s/c which corre- v
sponds to some particuler tangential trajectory. It remsins to . -
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ostablish the values of CgR/2k, R/Ry, and a3 for the selected value
of s/c., Actually, since CgR/24 1s a known function of R, the
problem reduces to approximating R/Ry and ag at the airfoil sur—
face,

Evaluation of R/RV at airfoill surface: To determine R/RV

the method of this report is based on a graphical solution utilizing
the hodograph plane, It is in this comnection that the traJjectory
data from the differential analyzer are plotted in the hodograph
plane in figure 8 for each of the five airfoll cases. To show the
general relation of drop velocltles to air velocities, the hodograph
of air at the airfoill surface 1s also shown for each case, It is
interesting to note in figure 8 that the velocity components for all
drops, regardless of the combination of ¥ and Ry, can be repre—
sented by one faired curve.2 Of particular interest, however, is the
fact that the hodograph for the drops, for both upper and lower ailr—
foil surfaces, always passes through the point ud/V = cos8 a,

vd/V = gin «, Thus, in the simplest case of an airfoll at zero

angle of attack, the hodograph of the drops always passes through

an ebscissa value of unity because this point corresponds physically
to the point of maximum airfoil thickness where straight—line tan-
gential trajectories always impinge upon the airfoll with free-stream
air velocity. The coordinates at the origin of the air and drop
hodographs correspond physically, of course, to the airfoll stag—
nation point,

To show the connection between the results of the trajectory
data for the five airfoil cases and the case of an arbiltrary airfoil,
figure 9 is presented. Figure 9(a) depicts several water—drop
trajectories in the physical plane impinging tangentially at the
same polnt s/c on an airfoil which is gt an angle of attack a.
These trajectories, for purposes of explanation, may be assumed to
correspond to various points on a line of constant s/c in figure 7.
Accordingly, there is an infinite number of particular combinations

2An inspection of figure 8(e) will show that, for the upper surface
of the NACA 652—015 airfoil, the curve was not faired through all
the data points. The reason is that the velocity components for
some of the date points were in error. This can be shown by noting
that every data point will not fall on a line connecting the origin
and e point on the air hodograph having the seme s/c value as the
data point. Each data point must lie on such a line because the
slope of a trajectory tangential to the airfoil at some s/c posi—
tion and the slope of the airfoil at the same s/c position are
equal. The data points in flgure 8(e) considered to be incomsistent
with this criterion are designated with tag marks and are not
heavily relied upon for esteblishing the drop hodograph.
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of V¥ and Ry which are affine to any perticular position of tan-—

gential drop impingement (s/c)t. In figure 9(a), a single vector M
representing the drop veloclity for all the trajectories is drawn

tangentislly to the alrfoll at the point of drop impingement. Only

one vector is shown because the tangential trajectory hodographs _

presented in figure 8 indicate that all drops impinging tangentially

at a common point may be considered to have the same velocity. Also

shown in figure 9(a) is & vector representing the air velocity at

the point of impingement for the trajectories. The angle between o
the drop— and air—velocity vectors and the x axis 1s deslgnated by

the angle 6. In figure 9(b), a typical air and drop hodograph is

shown and the same vectors as shown in the physical plane are indi-

cated. It should be noted that the difference in length of air and

drop vectors at a particular s/c position is numerically equal to

the value of R/Rv given by equation (3).

As cen be seen from figure 8, all five airfoils exhibit the same
characteristic in regard to the single—valued nature of the term
R/Rv with chordwise position, and 1t will be assumed that all other
airfoils will display the same characteristic. However, in order to
calculate values of R/RV for en arvifrery alrfoil, both hodographs
of the alr and of the tangential trajectories are required. The A
hodograph of the air velocity at the airfoil surface is easily L
obtained from the velocity distribution over the airfoil, but the )
shape of the hodograph for the tangential trajectories is more dif— ¥
ficult to obtain. This is because the data of figure 8 yield only o
the information that the tangential—tra jectory hodograph slways will
pass through the point uy/V =0, v3/V = 0 and the point—-
ug/V = cos a, v3/V = sin a.

With two points on the trajectory hodograph always known, it was
concluded that, 1f one more point could be established, preferably
where the vertical—velocity component reaches the maximum value,
the general shape of the trajectory hodograph would be reasonably
ascertainable. It was noted from the hodographs in figure 8 that
peak values of va/V and vd/V were at nearly the same location on -
the airfoil surface. That is, values-of Vopeg /V end vdmax/v

nearly elwasys fall on a straight line through the origin, and it
remains to determine Just-where on the line the value of vdmax/v

will fall. In this connection, it was decided to compare, for the

five airfoil cases, values of the vertical component of relative

velocity between drop and air attained at the position of maximum o
vertical air velocity. Accordingly, values of (vamax/V)—-®aﬂBx/V)and

vamax/v were obtained from figure 8 and these are plotted in , .
figure 10. An inspection of the data in figure 10 shows that the .
four Joukowski airfoll cases provide data sufficient to establish a v

relation between (v, /V)—(vg /V) and vamax/V; but too little
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information 1s available for the NACA 65~series sections to firmly
establish a relation between (vg /V) —(vdm/V) and vg /v.

The point plotted in figure 10 for the NACA 652—015 airfoll upper
surface does not lie on the curve established by the Joukowski air—
foll deta, and a qusstion arises as to whether this difference is
real or due to a possible improper fairing in figure 8(e) of the
upper—surface drop hodograph. While this question camnot be resolved
until further date are availeble, qualitatively it would seem that
the drop velocities should tend to approach more nsarly the alr
velocities in the case of low—drag airfoils because these shapes

are not so conducive to abruptly altering the paths of water drops.

To show how figure 10 cen be used as an aid in the construction
of the drop hodograph for an airfoil of arbitrary profile and
attitude, figure 11 is presented. The procedure is first to draw
the air hodograph and establish vamax/v. Then, the maximum vertical

velocity of the tangential—trajectory hodograph is determined as
being less than v V by the amount (v - in
g a [V by (Ve /) ~Fa /M)

accordance with the curve In figure 10. The value of vy /V 80

determined is assumed to lie on a straight line connecting the
origin and vamax/v. The positlon of vy /V along the radial line

determines the value of .(R/.RV)v at that particuler position.

Values of R/RV for other s/c positions are taken, as & first

approximatlion, as being in the same ratio to the air wvelocity at the
particular s/c position as the value of R/RV at vq /V is to

U,/V at v, __/V (curve A in figure 11). Values of R/Ry calcu—

lated in this menner usually are too large near the point
uy/V = cos @, v4/V = sin o (point X, figure 11), so that a drop

hodograph so constructed would probebly not pass through this point
as it should. To overcome this discrepancy in the drop hodograph
a5 computed by & proportion based on the peak point of the alr
hodograph, & curve without reflex is faired tangentislly into the
proportional drop hodograph from the point ud/V = cos d,

vd/V = gin &, The combination of the proportional curve and the

faired curve comprises the drop hodograph, which is labeled curve B
in figure 11. For the five airfoll cases, maximum deviations of
the drop hodographs obtained by the foregoing method from the drop
hodographs in figure 8 were of the order of 15 percent.

Two other methods were consldered for establishing drop hodo—
graphs. One method assumed R/RV to maintain a comstant value equal

to the value preveiling at the point ud/V = cos o, vd/V = sin a.



1h

NACA TN 2k76

R/
The other method assumed the ratio ﬁr;% to maintaln a constant
8

value determined by the value of R/Ry and Ug/V at the point

ug/V = cos a, va/V = gin a. The drop hodographs given by each of
these two methods also are shown for the example in figure 11. The
curves are lebeled C and D, respectively. These two methods have
the advantage of not requiring the use of the hodograph and fig—
ure 10; however, they are considerebly more inaccurate (maximum
deviations from the drop hodographs for the five alrfoil cases being
in the order of 30 percent) due to the neglect of factors of apparent
influence on the drop trajectories. Use of elther one of these
latter two methods is suggested for particular airfoll cases which
might happen to fall beyond the scope of the data presented in fig—
ure 10.

After the tangential—tra jectory hodograsph has been established
in relation to the hodograph for air, values of R/Ry are availsble
for verious chordwise positlions on the airfoil. These values are used
in equation (4) for arbitrarily selected values of Ry &and s/c.
Since values of Ry are arbitrarily selected, vélues of R are
ascertaineble. Furthermore, values of the term,’CdR/2h can be celcu—
lated because (4R/24% 1s & function of R in accordance with
table VI. Thus, to solve equation (4), the only other term to be
svaluated 1s &g.

Eveluation of the drop—acceleration term ag: The remaining

term to be evaluated in equation (4) is the acceleration of the drop

et the airfoil surface az. To determine the variation of this term
with chordwise position, values of &, were calculated from the
trajectory data by equation (%) for each of the airfoil cases presented
in tables I through V. The procedure used in meking the calculations
was to compute the value of R/RV by utilizing values of the
orthogonal drop—veloclty components from tebles I through V for
corresponding values of ¥ &and Ry. The term was calculable through
knowledge of- R/Ry s&nd Ry. The terms R/Ry, C&R/eh, Ry, and V¥ were
then substituted into equation (4) and solved for ay. The results

of this procedure are presented in figure 12 for each of the five
alrfoll cases. :

An inspection of figure 12 shows that drop acceleration at the
surface of the airfoil, like the hodograph of drop velocities for
tangentielly impinging trajectories, can be considered a single rela—
tion regerdless of the combinations of ¥ and Ry. How the singular
nature of the acceleration values arises can be shown by rewriting
equation (4) as follows:
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. =w(§%><§—v: (5)

However, since the term (R/Rv) 1s taken to be constant for a
glven position on the surface, equation (5) may be written

ag = (const) ¥C4 (6)

where the constant depends on the chordwise position and the value
of (B/Rv)t at that position. Thus, according to squation (6), it

is spparent that, if the product of ¥ and C3 remains constant for
varlous values of Ry at a given chordwise position, then the value
of a3 also will remain constant. Hence, to show the constancy of
ag at various chordwise positions for various values, products
of § and Cy were calculated for every combination of ¥ and Ry
presented in tebles I through V for the five airfoils. The procedure
used was to select a value of Ry and to derive Cy by using the

value of (R/Rv) noted on the hodograph for the s/c position

corresponding to the particular Ry value chosen. The products of
wcd‘ were compared with other WCd products corresponding to the
same physlcal point on the airfoil; but these latter products were
calculated by using values of V¥ obtained from & plot of the tabu—
lated values of ¥ and s/c for various values of Ry. This

procedure was adopted in order to obtain products corresponding to
farthest positions of impingement not given directly in tebles I
through V. Comparisons of the products are made in tables VII
through XI. These comparisons show that, for a given s/c position,
the product of ¢ and Cg generally is of the same order of magni-
tude for a wide renge of ¥ and Ry values, particulerly at the
lower values of s/c. Therefore, the assumption that a3 1s con—
stant for & particular chordwise position seems falrly well Justified.

The problem of evaluating drop acceleration now has been
reduced to finding, for a number of s/c positions on the airfoil,
a velue of a3 which corresponds to each s/c valus chosen.

In approximating the drop acceleration at a point where the
drop trajectory i1s tangent to the alrfoll surface, several pro—
cedures sre possible, as was the case with the term R/RV. Of the
various procedures Investigated, the one which will be presented
herein 1s considered most accepteble because the resultant accuracy
is commensurate with that produced by the most accurate procedure
presented for obtaining R/RV. In addition, the procedure is simple
in application. For this procedure, the approximetion is made that
the tangential acceleration of a drop at a glven point on the surface
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1s the same as theEFcceleration of the alr along the airfoll surface
at the same point,. The equation used to express the drop acceler—
ation in terms of alr velocity at the airfoll surface is:

U, _ a(U,/V)

adz-V—"Xd_(s ) (7)

The velocity gradient term in equation (7) can be evaluated simply
by plotting Ua/V ageinst s/ ¢, and obtaining the slope of the
resulting curve at the desired s/c positions.

Results obtained by using equation (7) to approximate values -
of ag for the five alrfoll cases are shown in figure 12 where
the calculated point values are denoted by square symbols., It will
be noted that equation (7) appears to provide good results for the
symmetrical Joukowski airfoil case (fig. 12(a)}), and over most of
the lower surface of each of the other four airfoill cases (figs. 12(b),
12(c), 1256), and 12(e)). For these latter four airfoil cases,
equation (7) provides upper—surface drop-acceleration values toward
the leading edge of the airfoll which appear in good egreement with
the trajectory data; but farther aft, the ability of equation (T7)
to predict appropriate values diminishes appreciably, particularly
for the Joukowski and FACA 65,~015 airfoils at 4C angle of attack

(tigs. 12§c) and 12(e)). In these instances, the insbility of
equation (7) to yield drop acceleration values fairly far aft on
the airfoil surface apparently is because the drops impinging in
this region heve sufficlently large inertia so as not to respond to
the very rapid changes in surface—eir velocities prevalling near
the position of maximum air velocity. Except quite near the leading
edge, the trajectories are fairly strailght, indicating that the
impinging drops do not respond appreclably to the vertical components
of alr velocity. Thus, it seemed that a sultable representation of -
drop acceleration for the case of an airfoil with a velocity peak
located near the leading edge might be cbtained by assuming that the
3
Only the tangential component of drop acceleration needs to be
approximated since the normal component of drop acceleration can_ .
be shown to be equal to zero at the point of drop impingement
for tangentlal trejectories. That the normal acceleration of the
drop 1s zero at the point of impingement can be shown by writing
the equations expressing dynamic equilibrium of a drop. The terms
involving the drop and air velocities are resolved normally and
tangentially. A substitution of the boundary conditions at the
point of impingement shows that the normal acceleration must equal
zero at this point.
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drop acceleration was influenced mostly by the x components of air
velocity. In equation (7), then U,/V would be replaced by ugy/V
so that

_uy  d(ug/7)

a.d T X d_(s c) (8)

Equation (8) was used to calculate additionsl drop-acceleration
values for the upper surfaces of the airfoils presented in figure 12
and the results obtained are compared in these figures with drop
acceleration values given by the trajectory data. The points calcu-
lated by equation (8) are shown as triangles in figure 12, and
represent a good approximation of the upper surface ay values
fairly far aft on these surfaces.

The questlion arises as to whether 1t would be possible in the
general case, Wwhen the differential analyzer data points shown in
figure 12 were not present, to detect the inadequacy of equation (7)
to represent the correct values of &a3z. In this comnection it should
be noted thet the point on the curve for &3 =0 can always be

selected because this point corresponds to the chordwise position of
the tangentially impinging straight—line trajectory having the
maximim s/c intercept. This particular trajectory can always be
established by constructing a line tangent to the upper surface of
the airfoil and parallel to the free—stream velocity. With this
point located it would be quite evident that the square data points
(equation (7)) in figure 12(e), for instance, could not represent
the correct curve, and that equation (8) should be used to obtain
additional points to provide a reasonable guide. The technique

of falring a curve, through calculated drop—acceleration values,

to a value of zero ecceleration.at the extreme position of drop
impingement cen be used also for the lower surface of airfoils; but
the technique can be applied only in those instances where the
alrfoll angle of attack is sufficlently low to permit a straight—
line trajectory to lmpinge tangentislly at some point on the ailrfoil
surface.

Summary of celculation of scaele modulus ¥ : The two preceding

subsectlions have shown how the terms in equation (4) can be evaluated
to obtaln values of ¥ for selected Ry values at chosen positions
on the airfoill surface. However, a specilal procedure for evaluating

¥ &t the stagnation point is necessary, since equation (4) cannot
be used to evaluate the scale modulus at or very near ths stagnation
point. This procedure is more sultsbly discussed in connection with
the sectlon on rate of impingement which follows.
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For a further verification of the calculation of -scale modulus,
appendix A Iincludes a comperison of results of empirical calculations
of farthest position of impingement with results obtained from formal
golutions of the trajectory equations for five airfoils.

Gensralizatlion in regard to rate of impingement.— Another

quantity of interest to the designer of an aircraft thermal—ice—
prevention system is rate of drop impingement on an airfoil. An
expression for welght rate of drop impingement per umit length of
span, according to reference 7, is given by

Mg = 3600VmAy,, ! (9)

In order to evaluate the rate of impingement Mg, the term
Avot' must be known. When methods like those of references 3, 5, and
6 are employed, Ayo_b' can be determined directly from the calculated
trajectories which impinge tangentially upon the airfoil., For an
empirical procedure where no trajectories are avallable, however,
determination of Ay, ' must be based upon quantities which are
known. Preceding sections have shown that (s/c)ut and (B/C)Zt can

be established as a function of V¥ for various values of Rys
hence, the airfoil ordinates corresponding to the farthest position
of drop impingement on the upper and lower surfaces y“t and yzt

also cen be ascertained as a function of ¥ for various values of
RV. Because values of 7. and ¥y can be obtained readily for a

wide range of ¥ and Ry values, the data were examined for a
relationship involving Ay, (for small angles of attack, AY,

is approximately equal to Ayot') and the quantity Yu, T2, which

will be called Ayt. In this regard, Ayo wes compared to Ayt

over the range of ¥ and Ry values presented in tables I through
V for the five airfoil cases. The results are shown in figure 13.

An inspection of figure 13 shows that; for each airfoil, the
ratio of Avot to Ay can be considered linear with respect to the

log of the scale modulus ¥ for various Ry values. The linearity
exists for values of (Ay,/Ay) < 0.8 for the Joukowski airfoils,
and & value of (Ay,/Ay)y < 0.9 for the NACA 65,-015 airfoil; but
this linearity appears to be characteristic only of airfoils as
cylinder data from reference 6, when plotted in the same manmer, do
not show this property. In figures 13(c) and (e}, the ratio notice~—
ably exceeds unity, the reason belng that the projected frontal
height h (equal to Ayot' for the limiting case of straight—line

trajectories) exceeds the airfoil maximum thickness when the airfoil
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angle of attack i1s other than zero. Of special interest in figure 13,
however, is the fact that the ratio (Ay,/Ay)y must become zero at
some particular value of ¥ for a given value of Ry. This
"eritical" value of ¥ can be calculated from an serodynamic prop—
erty of the airfoil. According to reference 6, for symmetrical bodies
at zero sngle of attack, the critical value of ¥ (i.e., values
greater than that for which no drops impinge on the body) is given by

Yoy = tpy Xia/T) (10)

¥=0

For symmetrical bodies at an attitude other than 0°, or for unsym—
metrical bodies at an erbitrary attltude, the same form of equation
(10) applies, but with the notation slightly altered, thus

(s /V)
Ver = l'R'\T "_agﬂ'

| "
¥ =0

This change is made because the small drop which Just impinges at
the stagnation point of the airfoll closely follows the stagnation
streamline which, in the general case, 1s not a straight line. For
simplicity, though, equation (11) shall be written

*cr = LBVG (12)

Tn order to use equation (12), the problem presemts itself of
assigning a value of G <for the case of an aribtrary airfoil,
Fortunately, the problem 1s relieved by the fact that the answers
sought, s/c and E, are effected only in a minor way by variations
in G# Thus, it was believed that for determining G +the airfoil
could be replaced by a shape more amensble to calculation, It was
assumed that a symmetrical Joukowskl alrfoil would be representative
of that type section having maximum thickness fairly well forward,
and an ellipse representative of that typs section having maximum
thickness well aft (low-drag airfoils). Since the major factors
influencing the value of G are thickness and angle of attack,

4Calculations have shown that negligible changes in s/c and E are
incurred for a change In G as large as 10 percent.
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calculations of G were made for a symmetrical Joukowskl airfoil
and an ellipse of different thickness and 1ift coefficients.® The
results of these calculations are presented in figure 1l%. The data
in 14(a) are intended for use with airfoils resembling Joukowski air—
foils, and may be used directly. The data in figure 14(b) are
intended for use with low—drag profiles; however, it is first neces—
sary to establish an "equivalent ellipse” thickness ratio for the
low-drag section belng used. An equivalent ellipse is defined for
the purposes of figure 1i(b) as an ellipse having its leading—edge
radius equal to the leading-edge radius of the airfoil, and a thick—
ness equal to the airfoll maximum thickness. The major axls of the
ellipse is thus established, and the ellipse thickness ratio can be
computed. An equation expressing the thickness ratlo of the equiv—
alent ellipse in terms of the alrfoll leading-edge radius and thick-—
ness ratio is:

tg = f;‘:—; (13)

With the aid of figure 1%, the value of V¥,, for a large number
of airfolls can be estimated for any Ry value 1n accordance with
equation (12). Not only does this value correspond to the condition
of zero rate of lmpingement, but it corresponds to the condition
of zero area of impingement. Hence, the criticeal valus of V¥ can be
used for obtaining an additional point for area of impingement
computations, snd this value will correspond to the s/c value at
the stagnation point. '

While the condition of no drops impinging on the airfoll surface
yields one point on the curves, (Ay /Ay), versus log ¥, at
least one more point is required for each value of Ry in order to
esteblish the linesr relationships observed in figure 13. To locate
& second point on an isopleth of » 1%t 18 desirable to determine
a value of V¥ corresponding to a chosen value of (Ayo /Ay)t somewhat
less than unity. The reason for this specification 18 to procure a
spread in the values of (Ay,/Ay): used to establish the linear
relationships between (Ayo/ )y and log V¥, for isopleths of R,
which were noted In figure 13.

5No account is taken of the effect of a cambered profile on the
velocity gradient G. The reason for this is that tests with an
electrolytic tank have shown that the effects of camber are very
small in comparison with the effects of thickness, and calculations
have shown that only large variations in G are important in
affecting the values of s/c and E,
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In developing & procedure for determining what value of V¥
is agsoclated with a specified value of (Ayo Ay)t on an isopleth of
Ry, the data from the five alrfoil cases were examined for values
of some parameter, related to (s/c)ut and (s/c)zt, which could

be used to fix the value of ¥ . The parameter used to supply the
necessary values was the efficiency of drop impingement E. The rela-—
tionship between E and (AYO/AY )y 1is given by

(), (5

Equation (14) can be derived by sterting from the definition of E
in terms of the initial drop trajectory ordinstes

| s L]
<You yOZ >t Ayo.t

E = - =

T T (15)

At the small angles of attack associated with most f£light conditions,
h in equation (15) can be replaced by tp,, and &yoi' BY Ayoy
so that

&V = Btp.y (16)
Then, if both sides of equation (16) are divided by Ayy &and the terms
rearranged, equation (14) is obtained.
The trajectory data for the five alrfoll cases provided, for dif—

ferent values of Ry, relatively constant values of E correspond—
ing to a value of® (Ayo/Ay).t = 0.8. These efficiency values were

8The procedure utilized was to determine from curves of (&% /A7) +»
as a function of V¥ (fig. 13), the value of ¥ at which
(A7o/A7)4 = 0.8 for different velues of Ry. Then, date from tebles I
through V were used to establish curves of E as a functlon of ¥
for the same values of Ry. On the efficiency curves, the value of E
corresponding to (Ayo/Ay t = 0.8 for a particuler value of Ry
could be determined by locating, for the same Ry value, the value of

which was established from curves of figure 13 to correspond to

Ayo/Ay)t = 0.8.
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used to obtain an average efficlency value for each airfoil case.
Then, by using equation (14}, en average velue of Ayy/tpe, could
be computed for each airfoill case by using the average efficiency
values and a velue of (Ay,/Ay)y = 0.8. The results are-presented .
in the following teble:

Efficiency of impingement, E (percent) Ayy
cumber o st
16 32 | 6k | 128 | 256 | 512102k} 2048 | _o " ace

I -= | TS5 | ==} 77.0| =={T75.5] —~—|78.0 77.0 ] 0.963

IT |76.0 | == | T45} == |55 | = ={T7.5]|-- 75.8 948

IIT |72.0 | == | 73.0| == [72.0 | = =]70.5 |~ = 71.8 .898

IV {77.0 | == | 82.0|~— {86.0| ——{82.0]|-— 8L.7 |1.022
v 55.0 [ == }59.0|=— 56,5 | —=[55.0 = — 564 705 .
The values of Ayt/tmax tabulated in the preceding table exhibit .

some variation between ailrfoil cases, and figure 15 is presented to
show this variation when AWt/tmax is agsswmed to be a fwmction only of
angle of attack, In figure 15, a curve is presented for the Joukowski
alrfoils, but not for the NACA 652—015 airfoll because the trajectory
date provides only one point. Until additional information is avail—
able on the variation of AVt/tmax with angle of attack, it is recom-
mended that the variation shown in figure 15 be used. It is possible,
then, to determine, for a given value of;-Rv, an approximate valus of
¥ at which (Ay,/Av)y = 0.8. The procedure which may be used for

determining this value of ¥ is shown graphically in figure 16, From
curves of (s/c)ut and (S/G)Zt as a fwmetion of log ¥ for a

specified value of Ry (fig. 16(a)), curves of yut__and Y1, a8 &

function of log ¥ are established for the same value of
(fig. 16(b)). For the relation shown by figure 16(b), there is a
value of AVt/tmax which is the same as the one chosen from the rela—

tion in figure 15 corresponding to the airfoil angle of attack. This

particular value of AVt/tmax corresponds to the V value at which .
(AVO/AW)t = 0,8 for the particular Ry value chosen (fig. 16(c)),
and the second point on an isopleth of Ry for (Ayo/Ay)t as a B

function of log ¥ 1s thereby determined.
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The previous discussion has shown how values of Ayo, may be
obtained for various ¥ and Ry velues. However, in the design
of a thermel ice-protection system, by the method discussed in
reference 1, 1t is sometimes more convenlent to determine the rate of
water—drop impingement by using the airfoil collection efficlency E
rather than by using the term Ayo 't‘ . In such circumstances,
equation (9) becomes '

Mg = 3600 Vn E tp,y

wherein E 1is given by equation (14). When equation (14%) is used and
the angle of attack is other then zero, the limit efficiency value
corresponding to straight—line trajectories wlll be greater than ity
because h wususlly is somewhat greater then tp...

Appendix A includes a comparison of results of calculations of
efficiency of impingement by the empirical method of this report with
results obtained from formal solutions of the trajectory equations for
the five airfoll cases.

Generalization in regerd to distribution of impingement.— Of
secondary importence in the design of heated wings is the distribution
of water—drop impingement over the length of interception along the
airfoil surface. However, knowledge of distribution of water drops
over an airfoil is sometimes quite useful and, therefore, a discussion
of the subject is believed worthwhile.

An examinetion of the trajectory data did not reveal any direct
way to obtain an empirical functional relation between impingement
distribution, scale modulus, and free—stream-drop Reynolds number.
Therefore, & graphical construction was resorted to in order to approx—
imate the distribution of drop impingement over an airfoll surface.
That a graphical procedure could be used in_this manner was found by
examining plots of the concentration factor ' C as & function of s/c
for verious combinations of ¥ and Ry. Typical variations of these
factors are presented in figure 17 calculated from data for the five
airfoll cases. For each of the airfoil cases presented in figure 17,
two curves represented by solid lines are shown. One curve is typlcal
for combinations of ¥ and Ry corresponding to curved trajectories,
and the other curve is typical for the combination of ¥ and Ry
corresponding to straight—line trajectories (¥=0, value of Ry
arbitrary). The curve for V=0 1s obtained by drawing a number of
straight—line trajectories to the airfoil to obtain values of the
concentration factor, C = dAo/dAs, and represents the locus of
maximum possible values of C. This curve, which will be referred to
as a limit curve, can always be obtained for a glven airfoil because

TThe use of the concentration factor C 1in the computation of heat
requirement due to drop impingement is discussed in reference 1.
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straight—line trajectories can always be reproduced, but the curves for
values of C 1less than maximum cannot be obtained because the shapes
of the curved trajectories corresponding to these values cannot be
determined. Because of the shape of the C distribution curves noted
for the five airfoll cases In figure 17, a trianguler distribution

has been found useful. to represent approximately the distribution
curves for curved trajectories. If & triangular distribution is
assumed, as shown by a dashed line for each of the ailrfoil cases, in
figure 17, the following equation may be written for the maximum value
of C on the triangular distribution:

from which

(17)

The denominator of equation (17) can be evaluated from the curves of
farthest positions of tangential drop impingement. The numerator mey
be evaluated from the equation

Y 0ds = En (18)
Szt
so that
Eh
C = 1

That the relation expressed in equation (18) exists can be shown
by recalling from equations (9) and (15) that the total weight rate of
drop impingement on an alrfoll may be written as

Mg = 3600 Vm Eh ' (20)

Equation (20) may also be written as the summation, between the farthest
positions of lmpingement, of the local weight rates of impingement per
unit surface area, thus
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5
81, :
. .
According to reference 1, M, in equation (21) can be expressed by

M, = 3600 VmC (22)

where

C = dA /aA, | (23)

By substitution of the value of My from equation (22) imto
equation (21), the result is obtained that

8
.Ms = 3600 me Ut Cds (2)'")
Szt

Then, by compering equations (20) and (24), equation (18) can be
obtained.

Use of equation (19) permits the calculation of Cp.. for a
triengular distribution because all the terms of the right-hand member
are known. The value of Cp,, is taken to be on & line connecting the
points C=1.0, s/c=0, and C=0, and s/c for the stagnation point.

The reason for this assumption is that the very large drops are very
little deviated from their paths, and the very small drops tend to
follow the stagnation streamlins.

The value of Cp,. Obtained from equation (19) always will be low.
However, if the triangular approximation is altered to'correspond more
nearly to the shape of the limit curve for the C values, while
retaining the enclosed area the same as the triangular area, more
accurate concentration-factor values cen be obtained. The altering
of the curve is an attempt to establish the locus of concentration—
factor values as it would be given by data obtained Ffor calculated
trajectories.

Generalization in regerd to calculating area and efficlency of
impingement at high subsonic speeds.— With the advent of airplanes in

the 500 to 600 miles per hour speed range, considerable interest has
been shown in the effects which compressibility may have on area and
rate of drop impingement.
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The differential analyzer computations for the five airfoil cases
of this study were made to encompass alrspeeds up to about 350 miles
per hour on the basls that any effects of compressibility could be
neglected. Consequently, no corrections to the velocity field were
introduced for any of the airfoils to account for compressibility.
However, for higher speeds, the effects of compressibility would be
expected to become more pronounced and some method of taking compressi—
bility 1nto account should be considered.

The effects of compressibility: In compressible flow below

the critical Mach number, streamlines at a large distance forward of
the alrfoil have nearly the same shape as for incompressible flow.
Nearer the airfoil, deviations of the compressible flow streamlines
from the incompressible flow streamlines are greater (reference 8).
Thus, in compressible flow, drops may be considered to start at
infinity at the same initial conditions as they would for incompres—
sible flow, but terminate on the airfoil surface at velocities
governed by the local compressible~flow surface—eir velocitles.
These velocities are, in gemeral, higher then corresponding incompres—
sible—flow velocities; therefore, compressibility may have some
effect on farthest position and efficlency of drop impingement.

If it 1s presumed thet drops in compressible flow react to a
chenge in surface—air velocities (due to changes in flow field
arising from compressibility) in much the same mamner as drops react
to changes In flow field caused by a change in airfoil basic thick—
ness, load distribution, or angle of attack, the same general
procedure used to calculate farthest position and rate of impingement
for incompressible flow can be applied to the calculations for
compressible flow. T — ' oo

To obtain the air hodograph for compressible flow when experi-—
mental data are not availsble, the equatlon

(25)

1/2

- ‘- 1-(1 + 0.7025M2CPM)°-2383

8

—— = l +
< V/u L 0.2025M°

(taken from reference 9) may be used to evaluate the magnitude of- the

velocity vectors. The pressure coefficient, Cp,,, in equation (25)
can be calculated using the Prandtl-Glauvert equation
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where

B =41

and Cp 1s the pressure coefficient at a point on the airfoil surface

when the flow is incompressible. The pressure coefficlent Cp 1is
related to the surface—air veloclty at the same point on the surface

by the equation
2
U
= 1—<—‘1> (26)

Values of U /V used in equation (26) to calculate various va.lues of
Cp are the same as those used to establish the air hodograph for

incompressible flow.

Effect of compressibility on the farthest position and effi-
ciency of dro ement: Because of incompressible—flow hodo—
graph is altered to another shepe for compressible flow, the drop
hodograph also will be modified, wtilizing the procedure developed
for the incompressible case. The changes in the drop and air hodo—
graphs in turn alter the vaelues of az and (R/RV.)t at points along

the airfoll surface. According to equation (4), if changes in a4

and the product (R/Ry). (C4R/24) are not proportionate, the scale
modulus will be altered for given Es/c:)Jc and Ry values. To show
the effect of compressibility on the scale modulus, some calculations
of farthest positlon and efficiency of drop impingement were made for
the 15-percent—thick Joukowskl airfoll at zero lift and M=0.6 (which
is near the critical value). A value of R —225 was chosen for the

calculations (430 mph, 15,000 ft, 0° F, a.nd drop dilameter of 25
microns). The results of these computations are compared in
figure 18 with empirical results for incompressible flow. Figure
18(a), which presents the farthest position of drop impingement as
a function of scale modulus, shows that the scale modulus has besn
increased slightly over most of the range in (s/c) for the isopleth
of Ry chosen. This result is equivalent to the farthest position
of lmpingement being increased from the value of (s/c)t corre—
sponding to the sams ¢ and Ry value in Incompressible flow. For
the conditions chosen, the increase in farthest position of Impinge—
ment 1s small and, for most practical purposes, may be neglected.
Figure 18(b) shows thaet compressibility also slightly increases
impingement efficiency. This result can be explained by equation (14)
which indicates that increases in E are effected by increases in
either the value of (Ay./Ay)y or Ayg, or both. Increases in the
values of both of these %erms, for given ¥ and Ry values, occur
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for increased wvalues of farthest positlon of impingement, and hence
impingement efficiency is increased. The increase in efficiency due
to compressibility for the same airfoil also is small and, like the
increases in farthest position of drop impingement, may be neglected
for most practical purposes. It should be noted, though, that the
computations for farthest position and efficiency of impingement
were made for & relatively low Mach number (0.6), and that somewhat
larger changes in both parameters for given V and Ry values may
be possible for airfoils having appreciably higher critical Mach
nunbers. However, it is suggested that the empirical method as
applied to compressible flow not be used for airfoil sectlons having
-high criticel Mach numbers (0.9) in view of the fact that no data
exist for giving validity to the extrapolation of the method of this
report to compressible flow.

PROCEDURE FCR USING THE METHOD TO CALCUIATE AREA,
RATE, AND DISTRIBUTION OF WATER-DROP
IMPINGEMENT ON AN ARBITRARY AIRFOIL

Previous sections have shown how the empirical method of this
report mey be applied to determine area, rate, and distribution of
impingement for an arbitrary asirfoil in either incompressible or
compressible flow. The procedure to be followed in using the method
will now be expleined by meens of an example of the computations in
the case of-an NACA 23015 airfoil, in incompressible flow, at cy=0.5.
The detailed computation procedure in this example is arranged in a
form believed to be most readily usable; and the various phases of the
computations are presented in a step—wise manner, each phase consisting
of several operations for ease in following the procedure. The
procedure for compressible flow is nearly the same as for incompressible
flow, hence, only the procedure for incompressible flow is illustrated.
However, where differences in procedure would occur for the case of
compressible flow, these sre noted. -

Area of-Impingement

The procedure for celculating ares of impingement consists pri-—
merily in determining values of (s/c)ut and (S/C)Zt' The following

steps explain how the empirical relations derived from the trajectory
data are used to determine these values, and figure 19 incorporates
necessary accompanying graphical relationships.
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Step 1: The following curves are needed for use during the
computetion procedure:

() A large—scale plot of the airfoil (fig. 19(=a))

(b) A plot of s/c versus x for both upper and lower
surfaces (fig. 19(b))

(¢) A plot of k for verious x positions (fig. 19(c))

(&) Chordwise distribution of incompressible—flow air
velocities over the airfoil surface (fig. 19(d))

Step 2: Construction of the air hodograph:

(2) On a coordinate system using vertical air—velocity
components as ordinates and horizontal velocity components
as gbscissas, measure values of alr veloclty as vectors
emanating from the origin. (These values are obtained from
the velocity distribution (fig. 19(d)) established in

step 1(d)). The slope of the velocity vectors with respect
to the horizontal axis is determined by the shape—Ffactor
curve established in step 1(c). Figure 19(e) illustrates
this step for the NACA 23015 airfoil.

(b) Connect the end points of all vectors noting that the
envelope curve (the hodogreph) passes through the origin

for the physical coordinates corresponding to the stagnation
point. Refer to figure 19(e) for illustration.

(¢) For compressible flow over a straight wing below the
aritical Mach number, compute the veloclties for the air

hodograph from
2/2

1(1+0.T025M7Cp, ) 2

9]
= =11l +
(v)M | 0.2025M2

Step 3: Construction of drop hodograph:

(a) From the hodograph established in step 2(b)
(incompressible flow) or step 2(c) (compressible flow),
note the maximum value of vertical air—velocity component
vamax/v for both upper and lower surfaces. For the NACA

23015 airfoil, the air hodograph shows that Vamax/V for
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the upper surface is 0.915 and for the lower surface, 0.39.

(b) Using figure 10, determine the value of @ /W dmax/v)

for both surfaces. A subtraction of - /V) @' /7) from
/V will yield the vertical location or Vipay/ (- Project

vdmax/v horizontally for each surface wntil it intersects the ray
connecting the origin and v /V. In this manner, the value

of- (R/Ry), corresponding to v V18 determined graphically,
In the cass of the NACA 23015 airPail, (Vo /M = Faga/V) for

the upper surface is 0,245 and for the lower eurface 0.068.
These values are measured from the air hodograph (fig. l9(f))
to provide values of (R/Rv) corresponding to upper and lowsr
surface values of v .

&mauc/v
(¢) Esteblish the vector passing through the origin and inclined
with the horizontal axls at an angle equal to the airfoil angle
of attack, -The length of this vector is made equal to unity
(fig. 19(f)).

(&) _For both airfoil surfaces, establish an approximate
tangential—trajectory hodograph which follows the eguation

Ya _ E%) X (Ué/v) (e7)
v v [§)
v x & Vepax

The hodograph determined by equation (27) for the upper
surface of the NACA 23015 airfoil is designated as curve A

in figure 19(g) and as curve B for the lower surface., When
equation (27) provides, for either the upper or lower surface,
a drop hodograph which falls to pass through the polnt

u3/V = cos a, vd/V = sin o (point X in fig, 19(g)), a curve
should be falred from point X to connect tangentially with the
approximate-drop hodograph as determined by equation (27).

In the example case, nelther the upper nor lower surface

drop hodographs passes through point X, and therefore curves
are faired from this point to the approximate drop hodographs.
The faired curves are labeled C and D in figure 19(g) for the
upper and lower surfaces, respectively. For the upper surfacse,
the approximate drop hodograph almost passes through point X,
so little difficulty is experienced 1n fairing & connecting
curve, However, for the lower surface, the approximate drop
hodograph deviates considerably from point X leaving a larger
latitude for fairing a curve from this point than was the
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case for the upper surface. In this instance, the contour
of the alr hodograph was followed as a gulde in fairing a
curve from point X to the approximate drop hodograph. The
combination of curves A and C for the upper surface, and
curves B and D for the lower surface, comprise the resultant
tangential—trajectory hodograph for each surface.

(e} Convert the x values used in the air hodograph of
figure 19(e) to s/c values by utilizing the relationship
in figure 19(b) between x and s/c. This step is shown
also in figure 19(g). .

(£) Measure the values of (R/RV)t as determined by the

drop and air hodographs in figure 19(g) and plot these
values against their corresponding s/c positions. This
step is performed in figure 19(h) for the upper and lower
surfaces of the NACA 23015 airfoil.

Step 4: Calculation of drop-acceleration values at the air—
foll surface.

(a) Use the air—velocity distribution over the airfoil
surface’ (fig. 19(d)) and the relation between x and s/c
(f1g. 19(b)) to establish the relation required between
U,/V and s/c for both upper and lower surfaces.

Equation (7) then can be used to calculate valueg for ag.
Values obtained for a3 by equation (7) are plotted
against thelr respectlve surface positions s/c, end this
1s done in figure 19(1) for the upper and lower surfaces
of the FACA 23015 airfoil.

(b) Include in the plot of a; versus sfe (fig. 19(1))
the value of s/c at which ag 1s zero on each surface.
The value of s/c at which ay 18 zero corresponds to

the extreme position of tangen%ial drop impingement on

the airfoil surface. For each surface, the extrems
position of drop impingement can be obtailned by drawing

two straight—line trajectorlies in the free—stream direction,
one tangent to the ailrfoll upper surface and the other
tangent to the lower surface, The point of tangency for
each stralght—line trajectory defines the s/c value
corresponding to an &y value of zeroc, For the NACA 23015
eirfoil at a 1ift coefficient of 0.5, the extreme position
of impingement on the upper surface i1s at s/c=23.0 and
on the lower surface, at s/c=53.0.
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(c) For each surface, fair a curve through the calculated
values of a3 to the value of s/c found in step 4(b)
corresponding to az of zero, This step is also performed
in figure 19(1). On the upper swrface, values of ag given
by equation (7) were considered in error over a small range
of s/c near the peek in the velocity dlstribution curve
(fig. 19(d)), and consequently little weight was given the
points in this region when extending the faired curve to
a,=0 at the extreme position of drop impingement. A few
a%ditional points can be calculated by equation (8) to aid
in the fairing of the drop-acceleration curve, but—since in
this example the extreme poslition of impingement is fairly
far forward (s/c = 23,0) and equation (7) will yield posi-
tive ay values for s/c values as far aft as 11 percent,
use of equation (8) was deemed umecessary.

Step 5: Computation of scale modull corresponding to arbi-
trarily selected values of farthest position of impingement,

(a) Using drop-acceleration values obtained from figure
19(1) of step & and (R/RV)t values from figure 19(h) of

step 3, calculate values of scale modulus V from equation
(4), The computations are made for arbitrarily selected
values 6f Ry and s/c. Values of Cy4R/24 required for
golving equation (4) can be obtained from interpolation of
the data presented in table VI, or preferably from a seml-
Jogarithmic plot-of the data, A small range of tabulated
CdR/Eh values, including the values involved in the compu—
tation of ¥ for the NACA 23015 airfoll is shown graphically
in figure 19(3J). The computations of V¥ for the NACA 23015
airfoil are shown in the following table:
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CALCULATION OF SCALE MODUILI FOR
CHOSEN AREAS OF IMPINGEMENT AND DIFFERENT Ry VALUES
Ry=10
CsR CaR
s/c ag | 83fy (R/Rv)t R —g‘—)_l_ (%—v-lXEdr \
UPPER SURFACE _

5 8.6 86 0.365 | 3.65 |1.h2} 518 166
10| 2.8 | 28 405 1 ho5 {1451 586 48
15 1.0 10 Al2 | yo120 {146 600 i7
20 .2 2 A05 | n,05 1.5 .586 I

IOWER SURFACE

5 2.7 27 0.10 1.0 1,17 10.117 231
10 1.0 10 A2 1.2 1.20 | .1bk 70
20 .6 6 .10 1.0 1.17{ .117 51
30 .35 3.5 .085 B85 (1.1t 097 36
Ty) A7 1.7 072 72 (1.13} .081 21
45 .10 1,0 .070 .70 |1.12 ] .078 13

Rv=lOO
UPPER SURFACE

5 8.6 860 0.365 |{36.5 2.88 11.05 819
10 2.8 280 105 140.5 3,00 {1.21 230
15 1.0 100 L12 k1,2 3.02 |1.24 80
20 .2 20 Lo5 |40.5 3,00 |1.21 16

IOWER SURFACE

5 2.7 270 0,10 {10 1.80 {0.180 1500
10 1.0 100 Jd2 12 1.90 | .228 k39
20 .6 60 .10 |10 1.80 | .180 333
30 .35 35 .085 | 8.5 1.72 | 146 2Lo
Lo A7 17 072 | 7.2 1.6k | ,118 14k
45 .10 10 .070 { 7.0 1.63 | .11k 88

Step 6: Establishing the curves of farthest position of
impingement.

(a) Plot the values of V¥ caloulated in step 5 against
the corresponding values of s/c as ordinates for isopleths
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of Ry. Us¢ a semilogarithmic scale, plotting the ordinates
arlthmetically. This 1s done for the NACA 23015 airfoil in
figure 19(k), -

(b) On the plots of s/c begun in step 6(a), denote by
lines drawn at constent s/c valuses the value of extrems
Position of drop impingement on each upper and lower sur—
face. For the NACA 23015 airfoil, at a 1lift coefficient

of 0.5, the extreme positions of impingement have been found
in step 4(b) as being at -8/c=23.0 on the upper surface,

at 8/c=53.0 on the lower surface,

(¢} Calculate from equation (12) the critical—scale modulus
value for each isopleth of Ry. The value of G required
to evaluate equation (12) for either incompressible or
compresaible flow can be obtained from figure 14. The value
of Wb calculated for a given value of Ry corresponds

to s/g at the stagnation point. Values of V,, calculated
from equation (12) for different-values of Ry also should
be plotted on the graph of farthest position of impingement
(f1g. 19(k)) begun in step 6(a). Since the NACA 23015 air—
foll can be considered to have the same type of profile as
Joukowskl airfoils, figure 14%(a) is used to obtain a value
of G for evaluating equation (12). For a value of c1=0.5
and & thickness ratio of 0.15, figure 14(a) shows the value
of G to be 37.5. When this value of G is used in
equation (12), V¥, has the following values:

E[ Yor
10 1500
100 15000

(d) For each imopleth of R, fair a curve through the
values of s/c plotted in steps 6(a) and 6(c) (fig.19(k)).
These curves should approach asymptotically, as a limiting
value, the farthest position of drop impingement for the
upper and lower airfoil surfaces. Figure 19(k) then may
be used for design purposes by determining the values of
B/c), and (s/b)z for particular values of ¥ and Ry.

Rate of Impingement

The procedure for the determination of the total rate of impinge-—
ment, as has been explained in reference 1, consists of swming the
rate of water-—drop impingement for each of the drop sizes in an assumed
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drop—size distribution. This is possible for each size of drop by
use of the equation:

Mg = 3600 EV mypayx

The values of V, m, and yygx are directly obtainable from a knowledge
of the nature of the icing conditions and the airfoil shape. The
procedure for calculasting efficlency of lmpingement consists essentially
of evaluating equation (14). The following steps explain how the
emplrical relationships derived from the trajectory data are used o
solve equation (14), and figure 20 1s presented to show the necessary
accompanying graphical relationships.

Step 1.~ The following relationship should be established
for use during the computational procedure: s/c as a
function of y/c for both upper and lower surfaces. This
re%ationship is shown for the NACA 23015 airfoll in figurse
20(a).

Step 2.-Establishing (Ay,/Ay): as a function of ¥ for
isopleths of Ry.

(a) TUsing the farthest position of impingement curves
(f1g. 19(k)), establish the airfoil ordinates at points
of tangential drop impingement as a function of log V¥
for isopleths of RV' Thisg is done in figure 20(b) for

the NACA 23015 airfoll for Ry values of 10 and 100,

(b) On the curves established in figure 20(b), establish
the values of ¥ at which (4y,/Ay)y=0.8. This can be
done by using figure 15 which provides, for different angles
of attack, values of AVt/tmax corresponding to the value
of (4y,/Ay)y=0.8. For the NACA 23015 airfoil (assuming
the NACA 23015 sirfoil to be similar in profile to the
Joukowski alrfoils), figure 15 gives Ayy/tpzy=0.9 at
a=3.6°, This value can be used in figure 20(b) to deter—
mine the values of V¥ corresponding to (Ayo/ﬂv)t=0.8- by
locating the ¥ values at which Ayy=0.9%tp,4,. For the
NACA 23015 airfoil, these V¥ -values *n figure 20(b) are
taken to be:

X X

10 28
100 130
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(c) Comstruct a semilogarithmic plot, assigning values
of scale moduli as ebscissas (logarithmic scale) and
values of (Ay,/Ay) g 88 ordinates (arithmetic scale).
Then, for each particular chosen value of Ry, plot the
values of .. corresponding to a value of (Ayo/Ay)4=0
and also the values of V¥ corresponding to a value of
(A7 /07)=0.8. This is done in figure 20(c) for the

NACA 23015 airfoil., In figure 20(c), the values of V¥,
are denoted by circles and the values of ¥ atb
(AYQ/AN')-b=O.8 are denoted by squares.

(4) Using the points plotted in step 2(c), conmect with

a straight line each pair of points having the same

value. This procedure estsblishes (Ay,/Ay); as a function
of ¥ for isopleths of Ry and is illustrated in figure 20(c)
for the NACA 23015 airfoil. The curves in figure 20(c) have
been extrapolated to approach a limit value of (AYO/AF )t=l.l3
which corresponds to h/tmx=1.09 for stralght-line tangential
trajectories.

Step 3.~Calculation of impingement efficlency:
(a) Equation (14) now is used to calculate impingement effi—
clency for various V¥ and Ry values. To evaluate
equation {14) for a selected value of ch record values of
(&47,/A7)y for arbitrary values of ¥ <Irom the relationship
(£ig. 20(c)) esteblished in step 2(c). For the same ¥ values,
obtain corresponding Ay.. values directly from the curves

established (fig. 20(b)) in step 2(c).

(b) Plot the values of E obtained in (a) sbove against the
corresponding values of scale modulus in isoplethe of Ry. A
semilogarithmic scale is recommended, with values of E being
plotted as ordinates on the arithmetic scale (fig. 20(d)).
Figure 20(d) then may be used for design purposes by determining
values of E for particular values of ¥ and BV"

Distribution of Impingement

Distribution of impingement is considered defined, as explalned in
reference l, when values of the concentration factor C are determined
over the region of drop impingement. The empirical procedure consists
first of evaluating distribution of impingement for straight—line
trajectories. By establishing the distribution of impingement for
straight-line trajectories, a limit curve (the locus of meximm values
of C) is obtained which can be used as a guide modifying an approximate
distribution for the particular trajectories of interest. Filgure 21
1s presented to illustrate the steps involved for the NACA 23015 airfoil.
These steps are subsequently described.
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Step l.-TImpingement distribution on an airfoll caused by
straight—line trajectories (the limit curve),

(a) To determine the impingement distribution on an
alrfoil for straight—line trajectories, the procedure 1s
to plot the ailrfoill contour and draw several straight—line
trajectorlies, 1n a streamwlse directlon, so that they
impinge upon the airfoll, The two tangentiasl trajectories
should be included, This procedure 1s illustrated in
figure 21(a) for the NACA 23015 airfoil,

(b) For each trajectory appearing in the plot made in (a),
note the trajectory starting ordinates and the corresponding
positions of Ilmpingement, s/c. Plot these values, using
position of impingement s/c as abscissas, and fair a

curve through the points (fig. 21(b)).

(¢) Establish concentration factor values for arbitrarily
selected values of position of impingement by obtaining

the slope, at various points, of the curve plotted in (b).

A plot of these concentration factor values agalnst position
of impingement values ylelds the limlt curve corresponding
to straight—-line trajectories, Note that the maximum value
is always wmity at the alrfoill leading edge, and the minimum
valuss are zero at the extreme position of tangential drop
impingement.

Step 2.-Determining impingement distribution for an arbitrary
value of scale modulus and free—stream Reynolde number,

(a) Calculate a maximum value of concentration factor

from equation (19). Values of s/c and E needed to
evaluate this equation for a selected value of Ry and
various values of ¥ may be obtalned from efficiency and
farthest position of impingement curves already established.

For the NACA 23015 alrfoll, the value of Cpax Dbecomes

_ B (0.75)(0.16%) .,
x (sav)t 1/2(0-135"'0-1"5) )

Crna

for a value of ¥ =100 and a value of Ry=100.

(b) Plot the value of Cp,, oObtained in (a) against
position of Impingement, s/c. Assume that Cp,, lies

on a straight line. connecting the points C=1.0, s/c=0,
and C=0 for s/c at the stagnation point. See figure 21(c).
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(c) Using the value of Cp,, oObtained in step (b),
form a triangular distribution of drop impingement
by drawing straight lines from the point Cpgx
to the points (B/G)u.t: C=0 and (s/c)zt, C=0.

This step is also illustrated in figure 21(c).

(d) Modify the triangular distribution established in
(c) to conform to the general shape of -the distri—
bution curve established in step 1{(c¢) for straight—
line trajectories. In performing this modiflcation,
the value of Cpay 18 usually increased such that
the new curve contains the same area as did the
triangular distribution. The modified curve is shown
in figure 21(c) for & particular combination of ¥
and Ry. For other combinations of ¢ and Ry that
may be needed for design purposes, other figures
gimilar to figure 21(c) would have to be constructed.

EVALUATTION OF THE EMPIRICAL METHOD
DEVELOPED IN THIS REPORT

The degree to which the final values of farthest position and
efficiency of drop impingement as calculated herein depend upon the
accuracy of determination of the intermediate quantities (R/R\T)t s
a., and G was investigated by determining the effect of arbitrarily
aitering these three quantitlies a given percentage. With this pro—
cedure, the effect on farthest position and efficiency of impingement
can be appraised for the selected changes in the three variasbles;
also, some concept can be gained of the approximate error in the
empirical method itself. When computations were made for the
15-percent—thick symmetrical Joukowskl airfoil at a = 4O, and the
values of (R/Ry)y a3, and G were altered by +10 percent in all

rossible combinations, it was found for farthest position of lmpinge—
ment- that in no case was changing G significant. The combination
of posltive and negative changes providing the largest change in ¥
resulted in a change in s/c of about 2-percent chord over most of
the range in values of V¥ . The empirical method contributed an
additional change of only-about 1/2—-percent chord. For efficiency of
impingement, the effect of a change in the term G alone was to make
and negative changes in (R/Rv) % and &y providing maximum change
in ¥ made a change in efficlency of about 3 percent over most of the
range in ¥ values. As compared with these changes, the approximations
of the empirical method led to efficiency of impingement values which
differed from the differential amnalyzer values by about —l5 percent.
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While the foregoing values will not be necessarily representativs
for all other airfoils, they nevertheless seem to indicate the order
of magnitude of error in area and efficiency of impingement to be
expected when the error in the terms (R/RV) s 83; and G can be kept
within +10 percent. Whether this sort of accuracy always can be
realized by using the procedures suggested in this report can be
ascertained only as more water—drop trajectory data become available.

CONCLUDING REMARKS

Results of water—drop trajectory data obtained from a differential
analyzer have provided a basis for the initial development of a
general method for empirically determining area, rate, and distribution
of water—drop impingement on airfoil sections of arbitrary profile. The
method, as applied to the incompressible~flow regime, is more Pirmly
established for airfoils resembling the Joukowskl airfoils investigated
than for low—drag airfoils, since the basic data were obtained for four
Joukowski airfoll cases and only one low-—drag section. Because the
differential analyzer data were obtained only for cases involving
incompressible f£low, the method as applied to compressible flow will not
provide area and rate—~of—impingement data having as much validity as
the data for incompressible flow. There is no doubt that further water—
drop trajectory data are needed, particularly for thin airfolls (order
of 5-percent thick) at high speeds, and airfoils at high angle of attack
(in the neighborhood of 12°). Whether these new data would revise the
procedurs presented herein, replace it, or substantiate 1t remains to
be seen. Until such data are available, however, the method of this
report should provide more complete and accurate information on the
rate, area, and distribution of water-drop impingement on an arbitrary
alrfoil than any other known emplirical means.

Ames Aeronautical Laboratory,
National Advisory Committee for Aercnautics,
Moffett Field, Calif., May 8, 1951.
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APPENDIX A

COMPARISON OF RESULTS OF EMPIRICAL CALCULATIONS OF
FARTHEST POSITION AND EFFICIENCY OF IMPINGEMENT
WITH RESULTS OBTAINED FROM FORMAL SOLUTIONS OF

TRAJECTORY EQUATIONS FOR SIX AIRFOILS

After a new design method has been developed based on a limited
amount of data, 1t is desirable, but not always possible, to evaluate
the accuracy of the method by applying it -to cases where checks on the
method exist. Unfortunately, in this investigation no experimental data
exlst and very little calculated data are avallable on water-drop trajec-
tories beyond that reported herein. However, there is some Justification
for checking the results of this method against the more accurate calcu-
lations for the five alrfoll cases since these data (except for distri-
bution of impingement) were used only to establish a procedure which,
when applied, would not necessarily yleld the same values for ares and
percent—impingement as the data. Consequently, the empirical relation-
ships just established were gpplied to the five airfoil cases, and
values of farthest position and efficlency of impingement were then
obtained and compared with the results of the differential anaslyzer
study. These comparisons for farthest positlon and efficiency of im-
Pingement are shown in figures 22 and 23, respectively. In addition, a
comparison is made in figures 24 and 25 for a 1l2-percent=thick Joukowski
airfoil computed by the method of reference 3, and also by the method of
thils report.

In examining figures 22 and 24, which compare farthest position of
impingement values, it can be seen that the calculasted points compare
felrly well with curves obtalned as & result of formal solutions of the
trajectory equations. A favorable comparison also appears to exist in
the case of efficiency of impingement, as is shown by the curves in fig-
ures 23 and 25. Discrepancies exist, but these may be expected in view
of the empirical relstlions used as a basls for the computations. It
will be noticed that values of farthest position of impingement were not
obtained for valués spproaching the limit position of drop impingement
on upper and lower surfaces. This omission is due to the fact—that the
values of drop acceleration approach zero &s the farthest position of
impingement spproaches the limit values on both upper and lower surfaces.
As a result, scale moduli corresponding to these positions of impinge-
ment are difficult to obtain accurately becduse a small error in drop
acceleration makes s large error in scale modulus. For all practical .
purposes, though, inability to calculate points near the limit values
makes little difference because the conditions in this range are seldom
realized in flight.
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Since the empirically calculated values for both farthest position
and efficiency of impingement are in reasonable agreement with the
theoretical velues, it appears to be justifiable to presume that calcu-
lations can be made with reasonable accuracy for other airfoils, at
least in the same angle-of-attack range. Extension to other alrfoils
of the method using the hodograph technique tacitly includes the as-
sumption that the vertical components of the tangential drop velocities
bear the same relation to the maximum vertical velocities of the air as
established in figure 10 for the five alrfoils of this study.
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TABIE I.— RESULTS FROM DIFFERENTTAL ANATYZER STUDIES OF WATER-DROP
IMPINGEMENT ON A 15—-FERCENT-THICK SYMMETRICAL, JOUROWSKI AIRFOIL

[c7=0; @=0°]

Eﬁi ¥ Ry Yo Surface | s/c w /v 3 /v -
1(a) 2 128 0.074 | Upper?t |0.265 1.0 0
1(a) 2 128 —.07% | Lower!|-.265 |[1.0 0
1(p) 8 512 .07k | Upper! | .273 997 .00k
1(b) 8 512 —. 074 - | Lower® |-.273 997 —. 00k
1(c) 32 2048 .0T2 | Upper | .262 .997 .013
1(e) 32 2048 —.072 Lowert | —.252 . 997 -.013
1(d) L 32 .073 | Upper* | .273 |1.0 .012
1(a) N 32 -.073 | Lower! |-.273 |1.0 -.012
1(e) 16 128 .070 | Upper® | .24k |1.005 .023
1(e) 16 128 .05 Upper .068 .99 .013
1(e) 16 128 .020 | Upper .021 .982 . .009
1(e) 16 128 —. 020 Lower |-—.021 .982 —.009
1(e) 16 128 —. 05 Lower |-—,068 .99 —.013
i(e) 16 128 —.070 | Lower! | —.24k |1.005 —.023
1(f) N 512 .0655 | Uppert | .225 1.004 .043
1(f) 64 512 —-.0655 | Lowert | —.225 1.00k —.0k3
1(g) | 256 2048 .058 | Uppert | .188 |1.007 .092
1(g) | 256 2048 .0k0 | Upper .058 .9k9 .069
1(g) 256 2048 .020 Upper .023 .931 .029
1(g) 256 2048 —.020 Lower |-—.023 .931 —.029
1(g) 256 2048 —.0ko Lower |-—.058 . 949 -.069
1(g) | 256 2048 —.058 | Lower® |—.188 |1.007 ~.092
1(h) 8 8 .059 | Uppert | .197 .99k .078
1(h) 8 8 —.059 Lowerl |_.197 .99k -.078
1(1) 32 32 .056 | Upper® | .185 .992 .089
1(i) 32 32 ~.056 Lowert | —.185 .992 —.089
1(3) 128 128 .0485 | Uppert | .150 .989 .149
1(3) 128 128 —.0485 | Lower?! | —.150 .989 —~.1k9
1(k) 512 512 .038 | Uppert | .108 .ok .225
1(k) 512 512 —.038 | Lowerl | —.108 .Oh1 -.225
1(1) {2048 2048 .025 | Uppert | .0T2 .856 .3k9
1(1) [2048 2048 —.025 | Lower! |-.072 .856 —.349
1(m) 6L 8 .0255 | Upper* | .078 870 .321
1(m) 6L 8 .018 Upper .031 .693 .192
1(m) 64 8 .008 Upper .010 . 698 .061
1(m) 64 8 —.008 Lower |-.0l10 .698 —. 061
1(m) 64 8 . -.018 Lower {-.031 .693 —.192

1Denotes tangential trajectories.
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TABLE I.— CONCLUDED
i{‘ngngle'g v Ry Yo Surface | s/c ug /v va/V
1(m) 64 8 ~0.0255 Lower:i {-0,078 0.870 }-0.321
1(n) 256 32 .021 Upperl .0T3 .828 .359
1(n) 256 32 - 021 Lowerl | — 073 .828 —.359
i{o) 102k 128 .015 Upperl .052 - .7141 451
1(o) 1024 128 .010 Upper .020 572 .198
1(o) 102k 128 .005 Upper .009 .563 .109
1(o) 102k 128 —.005 Lower -.009 .563 | —. 109
1(o) 102k 128 —-.010 Lower -.020 572 | -~.198
1(o) 102k 128 —.015 Lowerl | —.052 B ¢ I R X
1(p) 4096 512 .0110 | Upper? .038 .58k L h52
1(p) kog6 512 —,0110 Lowerl | —.038 .58L — 52
1(q) 16384 2048 .00% Upper? .022 .329 . 469
1(q) 1638k} 2048 —. 00k Lowerl | —,022 .329 | ~.469
1(r) 512 8 .0035 | Upperl .023 .355 51k
1(r) 512 8 -, 0035 Lowerl | —,023 .355 - 51k
1(s) 8162 128 .0020 | TUpperl .015 .251 Jo1
i(s) 8192 128 —.0020 Lowerl | —.015" .251 | —lho1
1(t) | 32768 512 .0005 | Upperl .016 . 187 59
1(t) 32768 512 —.0005 | Lower! | —.016 187 | —.b59

lIDe:t:Loi‘.eas tangentlal trajectories,
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TABIE II.— RESULTS FROM DIFFERENTTIAL ANALYZER STUDIES OF WATER-DROP
IMPINGEMENT ON A 15—~FERCENT-THICK SYMMETRICAI. JOUKOWSKI ATRFOIL
[c7=0.22, a=2°]

il;{%ig ¥ Ry 7, Surface s/c w/v | v /v
2(a) 4 256 —0.0046 | Upper: 0.236 |1.001 {0,04l
2(a) L 256 — 1548 | Lower: | —,316 | ,998 | .035
2(b) 16 1024 —.0055 | Upper? .223 |1.003 LOolk
2(b) 16 102k —.1539 | Lowerd —.310 .998 .030
2(c) 2 16 —.0081 | Upper? ..226 11.009 | .033
2(c) 2 16 —.1533 | Lower® | —,311 | .997 | .027
2(d) 8 6k —.0095 | Upperl .212 ]1.,011 .062
2(d) 8 64 —.0381 | Upper .0h5 .983 .054
2(a) 8 6k —.0667T | Upper .005 | .98k | .ok
2(a) 8 6L —.0956 | Lower -.026 | .97k | .039 .
2(a) 8 64 —.1243 | Lower —.082 912 | .033
2(a) 8 6h4 —.1532 | Lowerl —.308 .997 .022
2(e) 32 256 —.0140 | Upper2 .196 {1,015 | .083
2(e) 32 256 —.0l10 | Upper .01 | 980 | .066
2(e) 32 256 —.0683 | Upper .003 .969 .052
2(e) 32 256 —.0958 | Lower —.026 .970 .038
2(e) 32 256 —.1232 | Lower —.0T8 975 .02k
2(e) 32 256 —-.1508 | Lowerl | —,295 .995 .013
2(f) 128 102k —.0214 | Upper? \168 11,021 | .126
2(f) 128 102k —. 046} | Tpper .03% | 958 | .100
2(f) 128 102k —.0721 | Upper .002 | .9k1 | ,063
2(r) 128 1024 —.097T | Lower - 027 .939 .032
2(f) 128 102k —.1231 | Lower —.079 | .955 | .00k
2(f) 128 102k —.1488 | Lowert | —,265 | .992 |-.008
2(g) 16 16 —~.0435 | Upper? 1% |1.010 .160
2(g) 16 16 -.1598 | Lowerl —.245 .98k |-, 023
2(h) 64 6k —.0k93 | Upper? 128 1,012 202
2(h) 6k 64 —. Q705 | Upper .027 .908 .1ko
2(n) 64 64 —~.0902 | Lower —.001 .881 .083
2(n) 6l 64 —.1130 | Lower - 027 .881 .033
2(n) 6l 64 —.1345 | Lower -.0TL 921 }|—,013
2(n) 6l 64 —.1558 | Lowerl —.225 .983 {-.052
2(1) 256 256 ~. 0587 | Upperl .100 .999 .283
2(1) 256 256 —.0763 | Upper .022 .852 .189
2(1) 256 256 —. 0940 | Lower —.002 .827 .103
2(1) 256 256 —.1118 | Lower —. 023 .815 .015

lDenotes tangential trajectories.
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TABLE II.— CONCLUIED
Figure v Ry o Surface s/c uy /v va/V
| nunbexr

2(1) 256 256 -0,1298 Lower -0.058 |0.863 | -0.050
2(1) 256 256 —, 1475 Lowerl - 177 .963 —.105
2(3) 1024 102k —.0743 | Upperl .063 .91k b2k
2(3) 102k 102k —.1360 Lowerl -.118 .902 -.195
2(k) 128 16 -.0955 | Upperl .055 .881 72
2(k) 128 16 —-.1065 Upper .009 .6ho .235
2(k) 128 16 -.1160 Lower —. 00k .637 .113
2(k) 128 16 -.1250 Lower -.017 .6h2 —. 006
2(k) 128 16 -.1335 Lower —.036 .685 —-. 109
2(k) 128 16 —.1%30 Lowerl -.098 .854 —.246
2(1) 512 6L -.1005 Uppertl .038 767 .528
2(1) 512 6k -.1080 Upper . 009 .560 .270
2(1) 512 6h - 1155 Lower -, 004 .5h2 .132
2(1) 512 6k —.1230 Lower —-.016 .535 - 011
2(1) 512 64 —.1310 Lower -.03 611 - 140
2(1) 512 64 -.1382 Lowerl -.079 .813 -, 300
2(m) 2048 256 —.1085 | Upper: .028 .562 611
2(m) 20k8 256 —-.1130 Upper .00k .39k .255
2(m) 2048 256 ~.1182 Lower -, 005 .379 .118
2(m) 2048 256 -, 1228 Lower -, 014 377 - 050
2(m) 2048 256 -.1275 Lower —.029 .500 -.235
2(m) 2048 256 —-.1325 | Lowerl | —,055 688 | —.356
2(n) 8192 1024 - 1165 Upperl .015 .210 .51k
2(n) 8192 102k -.1190 -—-- 0 .270 .230
2(n) 8192 102k —.1218 | Lower —. 00k .260 .085
2(n) 8192 102k -.1250 Lower —.012 .273 —.110
2(n) 8192 1024 -. 1275 Lowerl -, 031 .520 —.390
2(o) 1024 16 —.1232 | Upperl ,008 .186 .610
2(o0) 102k 16 -, 1262 Lowerl - 015 . 100 —.243
2(p) 4096 6k —. 1243 Upperl .003 .090 L3k
2(p) Log6 64 - 1278 Lowerl -.015 .246 -.235
2(q) 1638k 256 —.1254 | Uppér: .002 103 .506
2(aq) 16384 256 — 1275 | Lowerl | —,01k | 175 .295

1Denotes tangential trajectories.
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TABLE III.— RESULTS FROM DIFFERENTIAL ANALYZER STUDIES OF WATER-DROP
IMPINGEMENT ON A 15—PERCENT-THICK SYMMETRICAL JOUKOWSKT AIRFOIL
lc7=0.1k; a=4°]

i&i‘;ﬁ; ¥ Ry Yo Surface s/c ug /v va /v
3(a) by o256 | -0.1682| Uppert | 0.204 | 0.9996 | 0.0785
3(a) )3 256 —.3215| Lowerl —. 108 .9946 .0705
3(b) 16 1024 —.1692| Upperl 94k | 1.0086 .1005
3(b) 16 1024 —.3223| Lowerl | —.L0O .9976 .0705
3(c) 2 16 —.1818| Upperl .192 | 1.003k .0962
3(c) 2 16 —.3330| Lowerl -.4o9 .9891 .0688
3(d) 8 64 —.1837| Upperl .170 | 1.0055 .1032
3(d) 8 64 —.3073| Lower -.135 .9802 .0728
3(d) 8 6l —.2824| Lower —-.064 .9782 .0789
3(d) 8 64 —.2577| Lower —.024 .9663 .1120
3(a) 8 6k —.2330| Upper .00k .9793 .0940
3(d) 8 64 —.2083| Upper .037 .9854 .1011
3(d) 8 6l —.3320{ Lowerd | =—.k400 .9930 .0638
3(e) 32 256 —.1881| Uppert L1488 | 1.017h .1381
3(e) 32 256 —.2121| Upper .03k 9764 221
3(e) 32 256 —.2358| Upper .002 .9653 .1050
3(e) 32 256 —.2594| Lower —.024 —_——— ===
3(e) 32 256 —.2832| Lower —.062 - -
3(e) 32 256, —.3068| Lower - 124 .9652 .0628
3(e) 32 256 —-.3316| Lowerl -.379 .9831 .0618
3(2) 128 1024 —.1994| Upperl 127 | 1.0204 .2031
3(f) 128 102k -.2074| Upper .062 .980k4 .0931
3(¢) 128 102k -.2205| Upper .028 .951k .1670
3(f) 128 102k —.2386| Upper- .00k .930k4 1410
3(£) 128 1024 —.2748| Lower -0l .9273 .0869
3(2) 128 1024 —.3077| Lower -.125 .9433 .0519
3(£) 128 1024 —.3316| Lowerl -.350 | 1.0200 .OL68
3(g) 16 16 —.2403| Upper: 121 | 1.0116 2241
3(g) 16 16 —.3665| Lowerl —.336 .9628 .0k15
3(n) 64 6k —.2472| Upperl .100 | 1.0133 .2881
3(h) 64 6L —.3422| Lower -.113 .8940 .OLL8
3(h) 64 64 —-.3231| Lower —.060 .8712 .0731
3(n) 6L 6k —.3043| Lower —.028 8694 147
3(h) 6l 64 —.2853| Lower —. 00k .8638 1675
3(h) 6h4 6k —.2665| Upper .018 .8990 .2148
3(h) 64 6l —.3606| Lowerl —.286 .9578 .0135
3(1) 256 256 —.2622| Upperl 068 1.0121 .1088
3(1) 256 256 —.2775| Upper 012 .8138 .2Th6
3(1) 256 256 —.2925| Lower —-.008 .7827 .1843

lpenctes tangential trajectories.
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TABLE III.— CONCLUDED

Figure

rumber ¥ Ry Yo |Surface| s/c ug /v vy/V
3(1) 256 256 | ~0.3078 | Lower {-0.028 |0.7864 |0.1092
3(1) 256 256 —.3353 | Lower -, 084 .8281 .0149
3(1) 256 256 —. 344k | Lower =125 .8660 0142
3(1) 256 256 —.3537 | Lowerl —.2h7 .9558 | —.0313
3(3) 1024 1024 —.2782 | Uppert 043 .8758 5817
3(3) 1024 102k —.3440 | Lowerr | -.155 8780 | —-.1212
3(k) 128 16 —.3126 | Upperl .Ol2 8255 .5550
3(k) 128 16 —.3598 | Lower —.067 <7143 .0364
3(k) 128 16 —.3500 | Lower —.0ko .6586 .0228
3(k) 128 16 —.3406 | Lower -.022 6048 .1031
3(k) 128 16 —.3313 | Lower -.006 615 =)0
3(k) 128 16 —.3220 | Upper —-.006 .6562 .3437
3(k) 128 16 —.3688 | Lowert - 145 8632 |-.1358
3(1) 512 64 —.3216 | Upperi .026 .6392 .TOL7
3(1) 512 64 —.3303 | Lower —.00k .5021 .3024
3(1) 512 6k —,3383 | Lower -.015 4678 .1513
3(1) 512 64 —.3441 | Lower -.027 5197 .0390
3(1) 512 64 —.3500 | Lower - 0li2 5566 |-—.0782
3(1) 512 6L ~.3558 | Lower —-.062 6465 | —.1363
3(1) 512 64 —.3605 | Lowerl -.112 .8133 | —.2045
3(m) 2048 256 —.3293 | Upperl .015 L2k0 . 7513
3(m) 2048 256 —.3324 | Upper .002 +3300 14553
3(m) 2048 256 —.3373 | Lower -.008 .2858 2hkho
3(m) 2048 256 —. 3432 | Lower -.022 .3548 .0060
3(m) 2048 256 —.3471 | Lower -.032 L4137 | -.1191
3(m) 2048 256 —-.3501 | Lower —.0k5 L1956 | —-.1923
3(m) 2048 256 —,3529 | Lowerl -.072 6575 |=—.2912
3(n) 8192 1024 —-.3382 | Upper: - .00k .0918 L7521
3(n) 8192 1024 —.3405 | Lower -.005 .1918 A371
3(n) 8192 1024 —. 3441 | Lower -.012 .1787 .1520
3(n) 8192 1024— —.3458 | Tower -, 020 2767 .0669
3(n) 8192 1024 —.347h | Lower -.031 2867 | -—.2011
3(n) 8192 102k —.3480 | Lowerl —.041 L1186 | —-.2832
3(o) 1024 16 —.3495 | Uppert .00k 11kt .6545
3(o) 1024 16 —.3544 | Lowert -.035 .3496 |-—.2808
3(p) 4096 6L —.3495 | Upperl .002 J1okT 6945
3(p) Log6 64 —.3530 | Loverl -.026 .21k6 | —.2157
3(q) 16384 256 —.3504 | Upperd .002 1597 849l
3(q) 16384 256 —.3535 | Lower?t -.025 L2Th6 | —-,2256

1Denotes tengential trajectories,
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TABIE IV.— RESULTS FROM DIFFERENTIAL ANALYZER STUDIES OF WATER-DROP
IMPINGEMENT ON A 15—-PERCENT-THICK CAMBERED JOUEKCWSKI ATRFOTL
[2=1.0 MEAN LINE; c;=0.l44; a=0°]

ziiE:i ¥ Ry Yo Surface s/e w /v | va/v
L(a) 4 256 0.0935 |Upperl 0.317 1.003 0.007
k(a) 4 256 —.0565 |Lowerl -.216 .998 -.002
L(p) 16 1024 .0915 |Upperl .310 1.008 .013
4(b) 16 1024 —.0565 | Lowerl -.213 .999 —-.006
Le) 2 16 .0855 | Upperi .305 1.009 .022
h{c) 2 16 —.0600 | Lowerl -.215 .99k —.001
L(a) 8 64 .0818 | Upperl 294 1.012 .031
L(4) 8 6l .0536 | Upper .096 .992 .022
L(a) 8 64 .0253 | Upper .038 .988 .020
k(a) 8 6L —-.0038 |Upper .002 .985 011
L(a) 8 64 |~.0318 |Lower -.033 .98k .003
h(q) 8 6k —-.0610 |ILowerl -.212 .999 -.008
k(e) 32 256 .0775 | Upperl 275 1.022 .050
k(e) 32 256 .0503 | Upper .092 .989 .Ok2
L(e) 32 256 .0225 | Upper .03k .976 .030
L(e) 32 256 | —.0045 |Upper .001 .972 .017
h(e) 32 256 —.0325 |Lower —.033 .973 .002
h(e) 32 256 —.0600 |Lowerl —.199 .990 —.016
L(f) 128 1024 .0660 |Upper: 243 1.033 .090
L(p) 128 1024 .0k20 | Upper 077 .976 075
k(f) 128 1024 .0160 |Upper .030 .954 .05k
h(r) 128 1024 —-.0085 |—-—~— 0 943 024
L(e) 128 1024 —.0335 |Lower —-.032 946 —.006
k(r) 128 1024 —-.0585 |Lowerl —-.183 .984 —.036
kig) 16 16 .0377 |Uppert 211 1.028 .128
L(g) 16 16 |-.0770 |Loweri | —.180 .978 | —.0k2
L(n) 64 6L .0312 |Upperl .192 1.038 .168
k(h) 6l 64 .0100 |Upper .061 .936 131
h(n) 6k 64 —.0110 |Upper .022 .898 .095
L(n) 64 6l —.0315 |Lower —.003 .884 .048
4(n) 6k 6k —.0525 |Lower —.031 .891 —-.007
L(n) 6l 6k —.0731 | Lowerl -.157 971 —.073
L(1) 256 256 .0180 |Upperl .158 1.038 .238
(1) 256 256 .0010 |Upper .050 .893 .188
L(1) 256 256 —.0165 |Upper .018 .839 127
L(1) 256 256 —.0340 |Lower —.004 .820 .05k
(1) 256 256 —.0510 |Lower -.028 .838 -.017
(1) 256 256 | —.0680 |Lower -.120 .940 -.129

1Denotes tangentisl trajectories.
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TABLE IV.— CONCLUDED

Fnigbuii v Ry Yo Surface s/c ug /v v /v
L(3) 1024 102k |0 Upperl | 0.109 | 1.000 0.357
L(3) 102k 102k | —.0620 | Lowerl | —.085 | .883 —.220
L(k) 128 16 —.028 Upperl .092 .958 405
k(x) 128 16 —.0382 | Upper .032 .T27 .288
4(x) 128 16 - 0480 |Upper | .012 | -.638 .189
h(x) 128 16 —.0575 | Lower —.004 649 .060
b(x) 128 16 —.0670 | Lower -.019 6hh —. 046
h(x) 128 16 —.0772 | Lowerl -.068 .838 —. 264
L(1) 512 64 —.0347 | Upper: .072 911 187
4(1) 512 6k —.0425 | Upper .025 .63k .350
L(1) 512 64 | —.050 | Upper .010 535 .208
(1) 512 64 —.0582 | Lower -.005 185 .031
4(1) 512 . 64 —-.066 Lower -.018 Shh —.124
h(1) 512 64 -.0725 | Lowerl -.053 754 -.319
4(m) 2048 256 | —.0440 | Upperl 046 .686 576
h(m) 2048 256 —.050 Upper .015 A48 .360
4(m) 2048 256 ~.0548 | Upper .005 .381 .192
L(m) 2048 256 —.0594 | Lower —.00L .368 048
4(m) 2048 256 —.0638 | Lower —.013 407 —.103
L(m) 2048 256 | —.0685 | Lower: | -—.038 .60k —.38L
h(n) 8192 1024 —.0548 | Upperl 025 A7l 650
h(n) 8192 102k —-.0569 | Upper .007 .258 .308
L(n) 8192 1024 —-.0590 | Lower —.001 .178 .082
h(n) 8192 1024 ~.0610 | Lower —.008 .184 -.079
h(n) 8192 102k -.0630 | Lower —-.012 211 —-.168
h(n) 8192 1024 —.0650 | Lowerl -.025 L6k —.428
k(o) 102k 16 —.,0604k | Uppert .022 .346 .561
k(o) 102k 16 | —-.0700 | Lower®! | -.018 .317 -.368
L(p) Log6 64 | —.0650 | Upper: 015 .285 527
L(p) Log6 6 | —.0675 | Lowert | -.,012 | .143 -.253
4(q) 16384 256 —.0655 | Upperl .006 113 391
k(q) 16384 256 | —.0670 | Lower: | —.008 .046 -.118

lDenotes tangential trajectories. : W
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TABLE V.— RESULTS FROM DIFFERENTIAL ANALYZER STUDIES OF

WATER-DROP IMPINGEMENT ON AN NACA 652—015 ATRFOIL
[CZ=0.}-IJ-I-; d.=)-l-°]

o1

z;g;g: ¥ Ry Yo Surface | s/c ug /v vaq/v
5(a) ) 256 |-0.1281 | Upperl 0.281 | 1.0023 | 0.081k4
5(a) 4 256 —-.2817 | Lower: -.523 .9973 0704
5(b) 16 1024k | —,1298 | Upper? .267 | 1.0073 .0864
5(b) 16 1024 —.2818 | Lowerl —.51k .9973 Noy(o)t
5(c) 2 16 | —.1395 | Upperl .259 | 1.0047 L0045
5(c) 2 16 | —.1646 | Upper .031 .9881 .0875
5(c) 2 16 —.2026 | Lower - 022 9847 .0825
5(c) 2 16 —.2246 | Lower -.074 .9867 .0793
5(¢c) 2 16 —.2467 | Lower -.150 9857 .0753
5(c) 2 16 —-.2687 | Lower —-.256 984T .0T7h2
5(c) 2 16 —-.2909 | Lowerl —.514 .9927 L0711
5(d) 8 64 —.142k | Upper: 240 | 1.0107 .1065
5(d) 8 64 —.1719 | Upper .016 9847 .0935
5(d) 8 64 —.2163 | Lower —-.050 9757 .0824
5(d) 8 6L —.2409 | Lower ~.125 .9807 L0743
5(d) 8 64 —.2655 | Lower —-.236 9797 L0712
5(a) 8 64 —.2899 | Lowerl -.512 .9907 .06l1
5(e) 32 256 —-.1493 | Upperl .209 | 1.0187 .1326
5(e) 32 256 -.1702 | Upper .023 9761 1155
5(e) 32 256 —.2193 | Lower -.052 L9617 .087h
5(e) 32 256 —.2437 | Lower -.131 9647 0743
5(e) 32 256 —.2685 | Lower —.249 9717 .0632
5(e) 32 256 —.289L4 | Lowerl -.506 | 1.0057 .0531
5(f) 128 1024 —.1603 | Uppert .150 | 1.0207 .1805
5(¢) 128 1024 —.1826 | Upper .008 9517 .1375
5(2) 128 1024 -.2282 | Lower —.068 9k27 .0853
5(¢f) 128 1024 —.2505 | Lower -145 | -.9kOT L0642
5(£) 128 1024 —.2726 | Lower —-.267 9557 LOlh62
5(f) 128 1024 | —.2878 | Lowerl -85 .9837 .0382
5(g) 16 16 | —.1951 | Upperi .128 | 1.0015 .2008
5(g) 16 16 | —.3202 | Loweri | —.k81 9776 .0383
5(h) 6k 6k —.2030 | Upper: .092 .9956 .2597
5(h) 6k 64 | —.2136 | Upper .012 .9155 .2055
5(n) 6k 64 —.2535 | Lower -.048 .8795 .1092
5(n) 6l 6k —.2787 | Lower -.127 8975 .0609
5(h) 64 6k —.3013 | Lower —.247 .9255 .0227
5(k) 64 64 | —.3111 | Lower: | =417 .9756 .007h
5(1) 256 256 —.2143 | Upper: o7 ok16 .3416
5(1) 256 256 —.2343 | Lower —.007 .8256 1964

1Denotes tangentisl trajectories.
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TABLE V.— CONTINUED
Fniggg; ¥ Ry Yo Surface s/c ug /v va /v

5(1) 256 256 0.2543 | Lower -0.0k0 | 0.8086 | 0.1102
5(1) 256 256 —.2717 | Lower —.093 .8316 .0k10
5(1) 256 256 —.2892 | Lower -.184 - -
5(1) 256 256 -.2983 | Lowerl -.355 L9686 | —.04k3
5(3) 1024 102k —.2267 | Upperl .026 .8575 461k
5(3) 1024 1024 —.2313 | Upper .010 1726 .3935
5(3) 102k 1024 -.2492 | Lower -.015 6715 1972
5(3) 1024 1024 —-.2692 | Lower -.060 6295 .0300
5(3) 1024 102k —.2782 | Lower —. 10k .7875 | —.0251
5(3) 1024 1024 —.2853 | Lower -.166 LTho5 | —.0692
5(3) 1024 1024 —.2883 | Lower?* —.245 L9175 .0942
5(k) 128 16 | -.2633 | Upperl .021 7926 4950
5(k) 128 16 —.2798 | Lower -.012 6436 .2336
5(k) 128 16 —.2945 | Lower —.0k2 .6395 .1003
5( k) 128 16 —~.3028 | Lower —-.080 L7194k | —.0500
5(k) 128 16 —~.3059 | Lower -.104 L7634 | —.0860
5(k) 128 16 —.3091 | Lowerl -.185 .880k | —.1302
5(1) 512 6l -.2676 | Upper? .018 L7536 S5TT9
5(1) 512 64 -.2719 | Upper .005 6496 4378
5(1) 512 64 -.2857 | Lower —.020 4935 .1605
5(1) 512 6k -.2926 | Lower. —.03k 5504 .0L0?
5(1) 512 6k -.3015 | Lower. —-.079 6954 | —,0989
5(1) 512 6k | —.3035 | Lowerl | —,1k5 8284 | —.1540
5(m) 2048 856 | =.2737 | Upperl- Noxih . 6606 .6718
5(m) 2048 256 —. 2748 | Upper .007 .5986 .5868
5{ m) 2048 256 —2781 | — - - 0 5216 - | L4106
5(m) 2048 256 -.2861 | Lower -.012 .4085 2245
5(m) 2048 256 —.2906 | Lower_ -.022 .3905 .060L
5(m) 2048 256 | —.2965 | Lower —~.0k8 5485 | -.0967
5(m) 2048 256 -.2989 | Lowerl -~.100 L7584 | —.1768
5(n) 8192 1024 | —.2798 | Upperl .010 5976 . 7847
5(n) 8192 1024 —.2801 | Upper .005 _——— =——-—
5(n) 8192 | 1024 —.2850 | Lower -.004 - -
5(n) 8192 1024 —.2886 | Lower -.010 .3035 2454
5(n) 8192 1024 -.2932 | Lower —-.022 2124 .0033
5(n) 8192 102k —-.2945 | Lower —.030 3423 | —,0863
5(n) 8192 1024 —.2958 | Lower —.033 .3983 | —.1068
5(n) 8192 1024 —-.2971 | Lowerl —.065 6765 | —.1867
5(0) 1024 16 —.2933 | Upperl .008 4372 .8238
5(0) 102k 16 —.3037 | Lowerl —.040 L4891 | —.1997

1penotes tangential trajectories.
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TABLE V.~ CONCLUDED

Figure R

number 17 v Yo Surfece| s/c ug /v va/v
5(p) 4096 64 |-0.2947 | Upperi: | 0.008 | 0.5712 | 0.8627
5(p) Log6 64 | —.3026 | Lowerl | —.02k4 2221 | —.1126
5(q) 16384 256 | —.2952 | Upper: .008 5730 .9007
5(q) 16384 256 —.3028 | Lowert | —.019 .1099 | —.0525

1Denotes tangential trajectories.
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TABLE VI.~ VALUES OF CgR/24k AS A FUNCTIOR OF R

R CaR/2k4 R CaR/2k4
0.00 1.000 500 11.46
.05 1.009 600 12,97
.1 1.018 800 15.81
.2 1.037 1,000 18,62
A 1.073 1,200 21.3
.6 1.108 1,400 2k,0
.8 1,142 1,600 26.9
1.0 1.176 1,800 29.8
1.2 . 1.201 2,000 32,7
1.k 1.225 2,500 Lo,k
1.6 1.248 3,000 47.8
1.8 1.267 3,500 55.6
2,0 1.285 4,000 63.7
2.5 1.332 5,000 80.0
3.0 1.37h 6,000 96.8
3.5 1.k12 8,000 130.6
k.0 1.447 10,000 166.3
5.0 1.513 12,000 204
6.0 1.572 14,000 243
8.0 1.678 16,000 285
10.0 1.782 18,000 325
12 1.901 20,000 365
1k 2.008 25,000 LT0
16 2.109 30,000 5Th
18 2.198 35,000 674
20 2.291 ko,000 778
25 2.489 50,000 980
30 2.673 60,000 1175
35 2.851 80,000 1552
ko 3.013 100,000 1905
50 3.327 1.2x105 2234
60 3.60 1.4kx105 2549
80 h.11 1.6x10° 2851
'100 k.59
120 5.01
140 5.40
160 5.76
180 6.16
200 6.52
300 8.26
350 9.00
koo - 9,82




TARLE VII.— COMPARTISON (F PRODUCTS OF SCAIE MODULUS AND IROP DRAG COEFFICIENT FOR THE
UPPER ARD TOWER SURFACES OF A 15-PERCENT-IHICK SYMMETRICAL JOUROWSKEL AJKFOIL

[a=0°; c3=0]

afc IRy, W By, | ¥, Brg | Yo [Bv, | ¥ Ry, | Vs Ca,¥, | Ca¥a | Cag¥, | Ca,¥,
0.197| B 8.0] 32 2.5 1 108 52.0] 512 105.0 | 2048 210.0 122.3 122.2 106.0 101.4

.078} B 64.032 [ 220,0 | 128 | 500.0| 512 | 1000.0| 2048 | 1810.0 B31.9 953.9 91%.6 871k.0

.023| 8} 512,032 11700.0 | 128 | 4250.0 | 512 | 9700.0 | 2048 [13500.0| T650.5 | 8302.2 8535.7 | 9705.8

273 8} === 32 Y0 | 128 5.0} 512 8.8 | ~0L8 15.6| =~ oh.1 1..8 9.6

.185| 8 9.8132 | 32.0 |128]| 65.5|512| 132.0(2048 | 260.0 146.5 157.1 | 132.0| 125.9

.073| 8 73.5|32 | 256.0 | 128 | 560.0| 512 | 1100.0{ 2048 | 2030.0 g77.8 | 1133.3 | 1041.2 a78.5

alsls § ———]32 L,3 | 128 2.0]| 512 1k .7 | 2048 275 === 27.7 29.% 16.5

2kt 8 3.1132 8.3 | 128 16.0] 512 ip,o | 2048 6L.o 57.2 ig,0 37.3 5.6

.150] 8 17.31 32 58.5 | 128 | 128.0{ 512 250.0 | 2048 460.0 239.6 267.6 bk 5 229 .4

0521 8 | 140.0| 32 | k75.0 | 128 | 1024.,0] 512 | 2250.0 | 2048 | 3860.0} 1gik.9]| 2180.9 | 1962.7 | =2079.6

.015] 8 [1130.0 | 32 [3400.0 | 128 | 8192.0} 512 | 27000.0 | 2048 |37000.0| 16884.8 | 1660L.% | 16452.8 | 27016.2

213l 8 ——-132 2.9 | 128 5.0 | 512 8.0 | =048 15.6| ——-— 18.3 12.2 10.0 9.3
.225] 8 h.7] 32 13.4 | 128 27.3| 512 6k.0 | 2048 112.0 T7.T T2.3 539.3 647 62.5
.108] 8 35.5] 32 | 122.,0 | 128| 260.0| 512 512.0 j 2048 | 9k0.0| Mk70.9| 538.0| A482.6 k15.0 483.0
.038| 8 | 220.0| 32 | 730.0 | 128 | 1720.0| 512 | h096.0 | 2048 | 6000.0| 3096.5| 3385.0 | 3319.8 | 3760.8 | 3147.6
.0161 8 [1085.0] 32 }3300.0 | 128 | 8250.0| 512 | 32768.0 | 2048 |26500.0| 13930.5 | 14157.2 | 14931.5 | 2B54E. 34h0.0
.262] 8 2.0 32 b9 | 128 9.0| 512 17.0 | 2048 32.0 37.6 290 21.3 18.5 18.7
-1881 8 9.2132 1 29.0 |128! 60.0}512} 12h.0lz048! 256.0] 137.8] k1.9 120.8] 118,01 137.6
072 8 | 76.0|32 | 265.0 | 128 575.0| 512 | 1170.0| 2048 | =048.0| 1002.1| 660.3 | 1063.1 ok5.6 | 1048.5
.022| 8 | 580.0| 32 |1860.0 | 128 | 4900.0| 512 | 11200.0 | 2048 |16348.0| 8683.2| o9113.1 | 9872.0 {10682.5 | 881k.1
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TABLE VIII.— COMPARISON COF PRODUCTS (F SCAIE MODULUS AND IROP IRAG COEFFICIENT
FOR A 15—FERCERT-THICK JOUROWSKI ATRFOIL
[a=2°; ¢y=0.22]

(a) Upper Surface

sfc (Rv,| ¥, [Re| V¥, I|Bv, LA Ry, v, Ca ¥ | Cao¥. | Cag¥y | Cag¥,
0.226 | 16 2.0 | 64 h.2 | 256 9.6 | 1024 17.0 1.2 11.1 11.6 10.8
49 | 16 16.0 | 64 40.0 | 256 95.0 | 102k 185.0 106.8 102.3 110.8} 113.1
055116 | 128.0| 64| 325.0 | 256 T700.0 | 1024 | 1310.0 826.0 808.1 796.81 788.5
.008 | 16 | 102h.0 | 64| 2380.0 | 256 | 6200.0 [1024 | 9700.0{ 9450.0| 7893.9 10258.8 ] 7026.6
212 | 16 3.7 | 6k 8.0 | 256 18.4 | 1024 35.0 26.1 21.hk 22.3 22.1

.128 | 16 24.5 | 64 64,0 | 256 140.0 [ 1024 276.0 161.1 162.2 161,7| 168.1
.038 | 16| 220.0| 64| 512.0 (256 1155.0 | 1024 | 2150.0 | 1449.0| 1300.0| 1334.3|1310.4
.003 | 16 | 1700.0 | 64| %006.0 | 256 | 12500.0 | 1024 -~ —~}13430.6 | 11462.5 | 16280.6 | — — —
236 16| - ==|64]| ———-|256 4.0 i102% B8O |mm = |~ —— k.9 5.1
196 | 16 5.8 |64 12.9 | 256 32.0 | 102k 61.0 Lo.2 34,1 38,2 38.1
.100 | 16 k5,016 115.0 | =56 256.0 | 102k 475.0 286.5 284.3 290.1 | 284.2
024 116 | 372.0 (64| 930.0 {256 | 2048.0 (1024 | 3700.0 | 2534.9 | 2919.6 euok.0 | 2289.5
002 | 16 | 2300.0 | 64| 5300.0 | 256 | 16384.0 |102L - —— | 26270.1 | 20785.4 | 27433.4 | — — —
.223 | 16 2.k 164 k.7 1256 11.0 {102k i6.0 16.9 12.6 13.4 10.2
.168 | 16 10.7 | 6k 25.6 | 256 62.0 | 1024 128.0 1.8 63.6 72.8 78.8
063 |16 | 106.0 | 64| 263.0 | 256 560.0 |102% | 1024.0 670.2 648.5 630.81 630.3
.010 [ 16| 850.0 | 64| 2100.0 | 256 | 5400.0 |1024 | 8192.0 | 6679.1| 6121.9| 7023.0 | 545k.T
W
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TABLE VIII.— CONCLUDED

(b) ZILower Surface

S/ ¢ 1 *1 Rv2 *2 RVe, 1{3 BV& *4, Cdl*]_ Cdg*g Cd@*g cd.4_,*4_
-0.311116 2.0} 64 6.0|256 10.0| 1024 17.2 25.2 25.7 18.1 1%.9
-.2u5116 | 16.0| 64 415.5| 256 89.0| 1024 170.0f 195.0] 187.0] 155.9| 143.9
—.098(16 | 128.0| 64 | 370.0|256 780.0{1024 | 1h40.0[ 1372.0| 1385.1| 1253.7! 1131.k
—.015|16 [1024 0] 64 | 4000.0[256 | 13000.0|102k | 21200.0 {19660.0|24463.4 |31159.T [23460.3
—.308[16| =2.5|64 8.0| 256 12.4 {102k 21.6/ 31.8] 3k.0| 22.3] 18.7
—.225(16| 22.1]64 64.0]256 121.0]| 1024 237.0] 257.2] 24%9.3| 205.0] 194.6
—.079|16 | 163.0{ 6k | 512.0(256| 1130.0(102%| 2100.0| 1748.2| 1843.4| 1815.8| 1652.5
—.015 |16 [1000.0| 6k | 4096.0[256| 13200.0|102k | 21100.0 |1%382.4|19346.4 [2581h.,3 |19672.2
—-316(16| —— 64| ——=—]256 hollogh| — - = == == —=|— = = = Tdf— — ——
—.295(16 5.2| 64 14.31256 32,0102k 52.5 64.9 60.1 57.2 45.3
—. 177116 43.0/64| 121.0]|256 256.0| 1024 490.0| LuB2.2] L454.7] Le2,7] 554.5
—.055]|16| 265.0] 64 | 850.0|256| 2048.0{1024| 3750.0| 2804.8| 3024.9| 3263.0| 2923.7
—.014 {16 11100.0| 64 | 4250.0{256 | 16384.0]102k4 - — —|19103.7|23730.3|35962.1| —~ ——
—.310|16 2.0| 64 6.21256 11.0|1024 16.0 25.5 26.4 19.8 13.9
—.265|161 11.1|6k 31.3|256 62.5)102h 128.0] 137.0f 129.0{ 110.2| 108.6
—-.118§16| 91.0|64 ]| 272.0(256 560.0|1024 [ 1024.0| 993.8] 996.3| 909.%| B811.h4
—.031{16| 480.0| 64 | 1600.0{256| 3900.0{1024| 8192.0} 6575.0| T249.8]| 7381.0{ T400.0
W
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TABLE IX.— COMPARISON OF PRODUCTS (F SCAIE MODULUS AND IROP DRAG COEFFICIERT FOR A
15-FPERCERT-TEICK SYMMETRICAL JOUEOWSKI AIRFOIL
[a=4O; c7=0.44]

(a) Upper Surface

sfe B | Y1 ol w [l % (B | v, | Caw | Ca¥. | Cay,
0.192 | 16 2,01 6k 3.6] 256 7.6 | 1024 16.5 11.3 8.1 7.9
121 16 16,0 ] 64 3k.3 ] 256 64,5 | 1024 | 137.0 87.2 h.3 65.5
LOk2(16] 128,0| 6] 335.0] 256 520.0 | 1024 | 1000.0| 635. 680.2] 227h.9
ook | 16 {102h,0 64] 3000.0|256| Th00.0| 1024| — — | 87H0.0] 9352.9| 10161.2
170 | 16 4. b | 6k 8.0 | 256 17.0 | 102k | 36.0 24 .8 18.0 17.8
.100 | 16 27.5| 64 64.0 | 256 112.0 | 1024 | 230.0| 147.4 138.3 11k .3
026 |16 | 230.0] 64} 512.0 | 256 970.0 | 102k | 1680.0 | 1117.3 | 1023.0 919.8
002 (16| ———|64] h096.0] 256 | 13000.0 [ 1024 | — — —| — ——] 13065.4| 18246.3
20k 116 | ~—~]64| ———1256 k.o | 102k 9.0} === —-=-- L.
148 | 16 8.0 | 6k 15.5 | 256 32.0 | 102k 68.0 h .5 34,5 33.1
.068 116 63.0 | 64| 150.0 | 256 256.0 | 1024} Lo90.0) 328.7 317.2 255.1
.015 |16 | 370.0 |64 990.,0 [ 256 | 204B.0 | 102k | 2850.0 | 2203.4 | 2320.8| 2225,7
002 116 — =161 ———1256 1163840 J102h} ———1 ———1 ———|22147.7
Aok |16 | -~ ~ |61 3.3 | 256 6.8 | 1024 16.0f ——— Ted 7.1
J27 [16 13.6 |64 ] 29.0 | 256 55,0 11024 | 128.0| Th.9 6kt .0 56.6
LOU3 116 | 130.0 |64 | 320.0 | 256 500.0 | 102k { 1024,0] 542.1 54l .0 L77.9
00k |26 | = —— |64 2900.0 {256 | T7h00.0 |1024 | B192.0) - ——]10190.8] 11236.8

8%
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TABLE IX.— CONCLUDED

(b) Lower Surface
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TABLE X.— COMPARTSON OF FRODUCTS OF SCALE MODULUS AND DROP DRAG CCEFFICIERT FOR A
15-FERCERT-THICE CAMBERED JOUROWSKI AIRFOIL

[a=09; ¢;=0.4k4; a=1.0 MEAN LINE]

(a) Upper Surface

s/c |Byyl ¥ |Bvz| ¥2 |Rug ¥s |Bvy ¥a Ca,¥; | Cdz¥= | Cdg¥y

0.305| 16 2.0| 64 5.0| 256 10.7 | 1024 £1.5 15.0 13.9 13.5
2111 16 16.0| 64 k7.0 256 112.5 | 102k 222.0 122.9 134.0 143.9
092116 | 128.0| 64 | 338.0| 256 730.0 | 1024 | 1380.0| 1116.0 | 107k.3 | 1017.2
L0221 16 | 1024,0| 64 | 2550.0 | 256 | 5100.0 [ 1024 | 9300.0| 14170.0 | 11670,1 | 9747.6
204 | 16 3.1 | 64 8.0 | 256 17.5 | 1024 3k.2 22,9 22,k 22.0
192 | 16 22.0| 64 64.0 | 256 152.0 | 102k 292.0 172, 185.9 197.0
072 |16 | 203.0| 64 | 512.0] 256 | 1070.0 | 102k 2050.0| 1900.4 | 1697.8 | 1563.6
.015 | 16 | 1510.0 | 64 { 4096.0 | 256 | T400.0 | 1024 | 13000.0 | 20354.5 | 18122,2 |13735.2
Bl7 |16 ——-—~-{ 64| ———| 256 L.0| 102k Bl === ——— 5.1 5.5
275 | 16 5.1| 64 13.5 | 256 32.0 | 1024 63.0 37.4 37.2 39.3 40.5
A58 116 | 38.5| 6k | 107.0| 256 | 256.0|1024| U475.0 30k.2 | 1313.9 333.6 317.7
.0h6 |16 | 305.0| 6% {1000.0 | 256 | 20k8.0 | 1024 | 3850.0| 3619.9 | %035.1 | 3533.% | 3208.3
006 |16 | 3500.0 | 64 | 9600.0 | 256 | 16384.0 | 102k | 29000,0| 41119.9 | 38413.8 |27985.0 | 24083.6
310 |16 | ———| 64 3.4 | 256 7.9 | 1024 16.0| = ——— 9.6 10,1 10.6
2h3 | 16 9.4 | 64 26.2 | 256 6h.7 {1024 | 128.0 70.3 73.6 81.4 83.2
.109 |16 92.0 | 64 | 245.0 ] 256 540.0 | 1024 | 1024,0 T7L.h 753.3 730.9 706.2
025 1161 870.0) 64 1 2120.01 256 | '4300.0 §102k! 8192,0] 12211.0 | 9806.6 | 8287.0 | T7515.4

(T W
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TABLE X.~— CONCLUDED

(b) Lower Surface

s/c Ryl ¥, |Bvy ¥ |Bvg ¥s Ry, ¥, Cq,¥, | Caz¥e | Cagls | Cas¥s
—0.215)16 2.0{ 64 6.6|256 8.0/ 1024 12.0 22.6 25.6 13.3 9.7
—.180516 16.016% 36.5(256 67.8/1024| 1k0.0| 162.0f 130.3| 10%.6] 106.3
—.068|16 | 128.0|64 | 345.0|256( ThO.0j1024| 1520.0| 988.0| 993.3| 952.5| 1005.8
—.018]16 |102k.0}64 | 225.0|256| 6300.0|102k|12500.0| 9680.0| 7605.0| 9266.1| 9154.0
-.212116 3.2|6k 8.0|256 10.0|102h 19.0 36.1 31.0 16.6 15.4
-.157116 26.5164 gh.oles6] 122,0110201 250,01 257.11 221,21 182,61 186.3
—.053|16 | 183.0|64 | 512.0|256| 1430.0]|102k | 2400.0] 1410.4| 1469.8| 1449.5| 1580.8
—.012|16 |1700.0}64 |4096.0(256 |11000.0(1024 122000.0|15049.1 {13150. 4 [15489.915616.7
—216|16 | — — —J64 | — — —|256 h.0l102k 10.0{— — = =]~ — — — 9.5 8.1
—.199116 8.316L 19.0l254 32.01102L 58.0 8q.4 71.0 53.6 L5.5
—.120 |16 ho.ol6k | 129.01256| 2£56.011024| 508.0| 435.3] 41k.9| 361.5| 360.1
—.038[16 | 320.0}6k | 840.0(|256| 2048.0|1024 | 4200.0| 2643.6| 2554.3 | 2748.6| 2882.8
—.008 |16 [2500.0|6k |6400,0]|256 [16384.0{102k |28500.0 [18407.6[17738.0 [20373.0|18450.6
—.213116 2.616k 5.61256 6.011024 16.01 29.8 Pp.1 10.1 13.0
-.183 |16 14.3|64 33.0|256 62.0]1024 | 128.0| 147.9| 119.8 96.9 98.5
—.085 |16 8g.0|6k | 245.0|256 | 508.0{102k [ 1024.0| Tik.h| 7T25.7| 668B.6| 692.2
—.025 |16 | 610.0[64 |1500.01256 | 4000.0|1024 | 8192.0| 5854.3] 5121.0| 5952.4| 6055.h4
T
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MPARTSON OF PRODUCTS OF SCAIE MODULUS AKD DROP

AN TACA 65,-015 ATRFOIL
[a.=O°, Cz-‘-’O M]

(a) Upper Burfece

sfc [Bv,| ¥1 ([Bvp| ¥z [Bvg ¥s Ria | Ve Ca, ¥,
0.259{16 2.0{64 5.0l 256 10.0l102k| 20.5] 13.3
.128|16 16.0|64 k1.0|256 g92.0{102k| 161.0| 106.8
.021{16 | 128.0|64 | 390.0}256] 760.0}1024|1400.0] 859.0
008|16 |1024.0|6k | 3000.0]256]| 9000.0}1024] ~ ~ —9973.3
240116 3.5164 8.01256 17.111028! 33.70 23.4
.092|16 25.0|64 64.0|256] 137.0|1024| 248.0{ 165.9
.018|16 | 160.0(64 | 512.0)256| 1050.0]/1024[1800.0[1102.3
00816 | — — —|64 |4096.0|256 ~ — —|1024] — = =] — = =
28116 | —— |64 | — ——|256 k.olio2k 7.6 ———
20916 5.9|64 14.4]256 32.0|102k]| 59.01 39.3
.0hT]16 52.0|64 | 128.0(256| 256.0[1024] 500.0| 34%2.0
.01k (16 | 260.0(64 | 890.0|256| 2048.0{102% |3500.0{1980.5
.008{16 | —— —|64 | —~ —|256|1638k.0]1024]| — - = — — —
26716 | —~ — —|6k 3.7|256 T.61102k] 16.0| — ~ —
.150 |16 12.2]64 32.0(256 71.0|102k | 128.0| 81.7
026 16 g7.0{64 | 270.0]256] 530.0[1024{102%.0| 6k1.1
.010 |16 | 540.0]6k4 {2100.0{256 | 5000.0 |102k4 |8192.0|4657 .4

c9
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TABLF XT.— CONCLUDED

{p) Lower Surface

s/e By, *1 Rya #2 By, *3 A 1’4 Ca,¥, | Caz¥% | Cao¥ | Caute
—0.514 16 2.0[ 6} 5.0[ 256 10.0] 1024 16.0 27.2 £1.9 18.4 13.2
~1481 116 16.0| 64 31.0|256 7012024 135.0( 213.0| 237.2| 132.4| 119.9
—.185(16 | 128.0|64 | 345.0|256| 900.0{1024| 1620.0| 2330.0| 2013.4| 2079.1| 1732.5
—.04016 |102k.0(6h | 2400.0|256( 5800.0|1024[15800,0(17910.0(13499.9|12989.4 |15734.6
-.512|16 2.7|64 8.0|256 13.5| 1024 21.0 36.5 34.9 24.8 18.5
—.417(16 28.0} 64 6h.01256| 160.0{1024| 275.0( 396.1| 289.8| 303.3] 226.5
- 145116 | 172.0{64 | 512.0|256| 1250.001024 1 2360.0!| 3275.0] 3107.2] 2975.1] 2587.9
—.024|16 |1200.0(64 |4096.0(256110800.0|102%| — — —|20475.7(18420.0|18749.1] — — —
—-.523(16 | ———|64 | — = —|256 hool102h| = = = o = | = =~ T —— -
—.506 |16 6.0|64 12.3|256 32.0| 102k 52.0 82.9 54,6 59.7 k6.3
—.355|16 ko,0|64 98.0|256] 256.0|102k| L48.0| 623.7| W76.3| 512.2] 396.7
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(a) 15- perceni—ihick symmelrical Joukowski airfoil, a= O?
Figure 23— Empirically calculated point values of efficiency of impingement in
comparison with curves obtained from a differential analyzer.
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Figure 23— Continued.

TIRLT Differentral analyzer
— —Empirical calculations
! 256 i
1024}
: b
- ’6 I:\
H ‘N'. 1 -\_ ]| \
10°

Scale modulus, ¥ ("

symmetrical Joukowski airfoil;, a=2°

T

Slhe NI VOVN




=
5
e
«  100mmmm . 4
OQ) il il ' ! oY
o ; o
s . i ~—Differential analyzer
- 80 ; _ ] ' T ) o
w Lt —~Empirical calculations
3 - 256
60 TR
> i S 1024} |
E % U
E 40 Il4i1# i
kS = /GG s |
> i
s 20 =
;: IR \W
1
Ly i i ;ﬁ. i
/ 10 0?2 10 f 10°

Scale modulus, Y

(c) 15-percent- thick symmetrical Joukowski airfoll;, a=4°
Figure 23.— Continved,
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(d) I15-percent-thick cambered Joukowski airfoil; a=1.0 meon line;, a=0°
Figure 23— Continued.
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Figure 24.- Empirically calculated curve of farthest position of impingement in comparison

wilth point values oblained by stepwise compulations for a 12-percent-thick symmelrical
Joukowski airfoil, @ = 0°.
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Figure 25.- Empirically calculated curve of percent impingemen! in comparison wilth point

values oblained by slepwise computations for a 12-percent -thick symmelrical Joukowski
airforl, a =0°.
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